БОРИСОВ АЛЕКСАНДР ВЛАДИМИРОВИЧ

ИММУНОМОДУЛИРУЮЩАЯ АКТИВНОСТЬ *N*-ЗАМЕЩЕННЫХ ПРОИЗВОДНЫХ ХИНАЗОЛИНА С АЗОТСОДЕРЖАЩИМИ ФУНКЦИОНАЛЬНЫМИ ГРУППАМИ В УСЛОВИЯХ ЭКСПЕРИМЕНТАЛЬНОЙ ПАТОЛОГИИ

3.3.6. – Фармакология, клиническая фармакология

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата медицинских наук

Работа выполнена в ФГБОУ ВО «Волгоградский государственный медицинский университет» Министерства здравоохранения Российской Федерации»

Научный руководитель:

Заслуженный деятель науки РФ, член-корреспондент РАН, доктор медицинских наук, профессор

Тюренков Иван Николаевич

Официальные оппоненты:

Заслуженный деятель науки РФ, доктор медицинских наук, профессор, заведующая лабораторией психофармакологии ФГБНУ НИИ фармакологии имени В.В. Закусова»

Воронина Татьяна Александровна

Доктор медицинских наук, профессор кафедры организации и управления в сфере обращения лекарственных средств Института профессионального образования ФГАОУ ВО Первый МГМУ им. И.М. Сеченова Минздрава России

Козлов Иван Генрихович

Ведущая организация:

Федеральное	государственное	бюджетное	научное	учреждение	«Институт
эксперименталі	ьной медицины» («	ИЭМ»), 19737	'6, г. Санкт	-Петербург, ул.	Академика
Павлова, 12					

Защита диссертации состоится «___» ______2022 г. в _____ч. на заседании Диссертационного Совета 21.2.005.02 ФГБОУ ВО «Волгоградский государственный медицинский университет» Минздрава России по адресу 400131, г. Волгоград, пл. Павших Борцов, 1.

С диссертацией можно ознакомиться в библиотеке и на сайте (www.volgmed.ru) ФГБОУ ВО «Волгоградский государственный медицинский университет» Минздрава России

Автореферат разослан « » _____2022 г.

Ученый секретарь Диссертационного Совета, доктор биологических наук

Любовь Ивановна Бугаева

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования. Проблема нарушений работы иммунной системы сегодня занимает одно из ведущих мест в патогенезе многих заболеваний (инфекционных, аутоиммунных, аллергических, нейродегенеративных, онкологических соматических) (Сепиашвили Р. И., Бережная Н. М., 2015; Земсков А. М. и др., 2012). В связи с этим, поиск новых эффективных и безопасных иммунокорригирующих средств остается актуальной проблемой для теоретической и практической медицины (Самотруева М. А., 2015; Манько В. М., 2016; Петров Р. В., Хаитов Р. М., Черешнев В. А., 2017; Сепиашвили Р.И., 2016). В патогенезе различных заболеваний, как правило, наряду с иммунными механизмами участвуют воспалительные процессы, поэтому актуальным является эффективных средств, разработка обладающих иммунотропными и противовоспалительными свойствами (Хаитов Р. 2020). Такими соединениями могут быть хиназолины структурные аналоги пиримидинов. Пиримидины входят в состав природных нуклеотидов, оказывающих полифункциональное влияние секреции иммуномедиаторов, пролиферации процессы дифференцировки иммунокомпетентных клеток, их апоптоза и регенерации (Серебряная Н. Б., 2010; Giuliani A. L., Sarti A. C., Di Virgilio F., 2019; Morandi F. et al., 2018). Среди пиримидиновых соединений перспективными плане разработки В высокоэффективных, селективных и безопасных лекарственных препаратов, влияющих на иммунную систему, являются производные хиназолин4(3H)-она. Они обладают доказанным широким спектром фармакологических свойств: антибактериальных (Самотруева М. А. и Komarova-Andreyanova др., E. S. et al.. 2017), противопротозойных (Mendoza-Martínez C. et al., 2015), противоопухолевых (Abuelizz H. A. et al., 2017; Gouhar R. S., Kamel M. М., 2018), ноотропных (Тюренков И. Н. и др., 2015), иммунотропных (Петрова И. В. и др., 2014; Самотруева М. А. и др., 2016; Цибизова А. А. и др., 2020) и другими видами активности (Asif M., 2014).

Подводя итог вышесказанному, можно считать, что хиназолин, хиназолиноны и их производные представляют собой перспективный класс биологически активных азотсодержащих гетероциклических соединений с разнообразными терапевтическими и фармакологическими свойствами (Hameed A. et al., 2018) и поиск среди них соединений, обладающих иммунотропной активностью,

представляет большой практический интерес, что послужило основанием для изучения фармакологической активности 25 синтезированных N-замещенных производных хиназолина с азотсодержащими функциональными группами.

Утверждение темы диссертационного исследования состоялось на заседании Ученого совета ВолгГМУ (протокол №9 от 10.03.2022).

Степень разработанности. В последние годы значительно увеличилось количество исследований и публикаций, посвященных иммунотропных И противовоспалительных различных соединений как природного, так и синтетического происхождения (Хаитов Р. М., 2020), в том числе и хиназолиновых производных пиримидина (Бандура А.Ф. и др., 2014; Самотруева М. А. и др., 2015; Самотруева М. А. и др., 2016). Особого внимания заслуживают вещества с иммуномодулирующим действием. При многих заболеваниях с неконтролируемым воспалением развиваются вторичные иммунодефициты, что уже само по себе представляет проблему. Производные отдельную хиназолина многогранность их фармакологических эффектов (Ding P.-P. et al., 2016; El-Sayed N. N. E. et al., 2019; Hameed A. et al., 2018; Poudapally S. et al., 2017), но спектр иммуномодулирующего действия Nхиназолина замешенных производных азотсодержащими функциональными группами малоизучен. Следовательно, поиск безопасных эффективных обладающих И средств, иммуномодулирующим действием, остается актуальным.

Цель исследования. Изучение иммуномодулирующей активности и возможного механизма действия в ряду новых *N*-замещенных производных хиназолина с азотсодержащими функциональными группами, на основании фармакологического скрининга исследуемых производных *in vitro* и *in vivo* на моделях экспериментальной патологии

Задачи исследования:

1. Провести фармакологический скрининг *in vitro N*-замещенных производных хиназолина с азотсодержащими функциональными группами на выявление иммуномодулирующей активности с использованием клеточной модели ЛПС-индуцированного воспаления и изучение фагоцитарной активности с определением цитотоксичности изучаемых соединений.

- 2. Выявить наиболее активные соединения, обладающие иммуномодулирующей активностью, установить для этих соединений элементы зависимости структура-активность с последующим фармакологическим изучением на моделях экспериментальной патологии, в зависимости от показанных эффектов (активация или супрессия иммунной системы).
- 3. Изучить влияние наиболее активных соединений на неспецифическую резистентность организма (продукцию активных форм кислорода, фагоцитарную активность нейтрофилов крови в условиях экспериментальной патологии).
- 4. Оценить влияние наиболее активных соединений на морфологические и цитологические показатели органов дыхания при воспалительном процессе на модели ЛПС-индуцированного острого повреждения легких.
- 5. Изучить влияние наиболее активных соединений на количество и популяционный состав лейкоцитов крови, центральных (тимус) и периферических (селезенка) органов системы иммунитета в условиях экспериментальной патологии.
- 6. Изучить влияние наиболее активных соединений на гуморальный и клеточный иммунный ответ в условиях циклофосфамид-индуцированной иммуносупрессии.
- 7. Оценить роль экспрессии ядерного фактора каппа B, активности iNOS, продукции провоспалительных цитокинов (ИЛ-1 β , ИЛ-6, ФНО α) в механизмах иммуномодулирующего действия наиболее активных соединений на экспериментальной модели ЛПС-индуцированного системного воспаления.

Научная новизна исследования. Впервые с момента синтеза новых N-замещенных производных хиназолина с азотсодержащими функциональными группами было проведено их комплексное иммунофармакологическое исследование в условиях как *in vitro*, так и *in vivo* при экспериментальной патологии иммунной системы.

Теоретическая и практическая значимость работы. Впервые получены данные об иммуномодулирующей активности производных хиназолина с азотсодержащими функциональными группами в условиях экспериментальной патологии. Выявленные механизмы иммуномодулирующего действия и коррекции иммунного ответа под влиянием исследуемых соединений в условиях экспериментальной открывают патологии новые возможности изыскании иммунотропных лекарственных среди соединений средств

хиназолиновой природы, синтеза их аналогов с избирательным действием на различные звенья иммунной системы.

Методология и методы исследования. Методологической основой для проведения исследования являлись работы отечественных и зарубежных ученых в области иммунофармакологии и токсикологии. Исследования планировали и проводили в соответствии с методическими рекомендациями по доклиническому изучению лекарственных средств (Миронов А.Н., и др., 2012) с использованием современных методов *in vitro* и *in vivo* на мышах и крысах, а также на культурах первичных перитонеальных макрофагов и нейтрофилов.

Основные положения, выносимые на защиту.

- 1. Наиболее перспективными для создания на их основе эффективных иммуномодуляторов являются производные хиназолина соединения ВМА-21-10 и ВМА-13-15, обладающие выраженным имунномодулирущим действием *in vitro* и *in vivo*.
- 2. Производные хиназолина ВМА-21-10 (1,3-бис-[(5-амино-1H-1,2,4-триазол-3-ил)метил]-хиназолин-2,4(1H,3H)-дион) и ВМА-13-15 (N-[2-[4-оксо-3(4H)-хиназолинил]пропионил]-гуанидин) не проявляют признаков цитотоксичности в тесте высвобождения ЛДГ и МТТ-тесте в культуре перитонеальных макрофагов, после 72 часов инкубации в концентрации 100 мкМ.
- 3. В основе иммуномодулирующего действия соединения ВМА-21-10 и ВМА-13-15 на модели ЛПС-индуцированного системного воспаления лежит ингибирование экспрессии ядерного фактора транскрипции NF-кВ, что приводит к снижению продукции «ключевых» цитокинов воспаления ИЛ-1 β , ИЛ-6, ФНО α и активности iNOS.
- В основе иммунокорригирующего действия соединения ВМА-4. 13-15 на показатели неспецифической резистентности, гуморального и клеточного иммунного ответа при циклофосфамид-индуцированной активация лимфопролиферативных иммуносупрессии лежит процессов лимфоидных восстановление органах, функциональности за счет регенерации Т-системы клеточного и Всистемы гуморального звена иммунитета, стимуляция лимфо- и миелопоэза с повышением общего числа лейкоцитов крови, с частичным восстановлением их субпопуляций и фагоцитарной активности нейтрофилов.

Внедрение результатов исследования. Диссертационная работа выполнена на базе лаборатории фармакологии сердечно-сосудистых

средств и лаборатории метаботропных лекарственных средств Научного центра инновационных лекарственных средств с опытнопромышленным производством ФГБОУ ВО ВолгГМУ Минздрава России.

Исследования выполнены в рамках соглашения по гранту (Соглашение о предоставлении из федерального бюджета грантов в форме субсидий в соответствии с пунктом 4 статьи 78.1 Бюджетного кодекса Российской Федерации, г. Москва, «1» октября 2020 г. № 075-15-2020-777).

Степень достоверности. Достоверность результатов проведенного исследования подтверждается достаточным объемом экспериментального материала, полученного в экспериментах как *in vitro*, так и *in vivo* с использованием в работе современных методов, адекватных поставленным задачам и статистической обработкой полученных данных.

<u>Личный вклад автора.</u> Вклад автора является определяющим как в теоретических изысканиях актуальности выбранной тематики, разработке идеи исследования и планировании работы, так и в проведении экспериментальных исследований, сборе первичных данных и их обработке, интерпретации и обсуждении полученных результатов.

Апробация полученных результатов. Основные результаты диссертационной работы были представлены и обсуждались на Всероссийской научной конференции молодых ученых, посвященной 95-летию со дня рождения профессора А.А. Никулина «Достижения фармакологической современной науки» (Рязань, Медицинском профессорском форуме «Межотраслевая интеграция и передовые технологии в здравоохранении» (Ярославль, 2018), 5-ой Российской конференции по медицинской химии с международным участием «МедХим-Россия 2021» (Волгоград, 2022). По теме диссертации опубликовано 7 научных работ, в том числе 3 статьи в ведущих рецензируемых научных журналах, рекомендованных ВАК Минобрнауки РФ.

Структура и объем диссертации. Диссертация изложена на 190 страницах машинописного текста и состоит из введения, обзора литературы (глава I), экспериментальной части (главы II–VI), обсуждения результатов (глава VII), выводов, практических рекомендаций, списка сокращений и списка литературы. Работа

иллюстрирована 18 рисунками и 18 таблицами. Список литературы включает 252 источника, из них 45 отечественных, 207 иностранных.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность темы диссертации, сформулированы цель и задачи исследования, научная новизна, теоретическое и практическое значение работы.

В первой главе проведен анализ отечественных и зарубежных литературных источников по теме диссертации. Представлен современный взгляд на способы фармакологической коррекции нарушений работы иммунной системы. Дана характеристика иммунотропных средств и их классификация. Также представлен спектр фармакологической активности и свойства, характерные для хиназолинового скаффолда. Рассмотрены основные модели патологий для изучения иммуномодулирующего действия исследуемых соединений и механизмы, лежащие в основе их развития. На основании приведенных данных была сформулирована концепция данного исследования.

Во второй главе диссертации описаны материалы и методы исследования. Объектами исследования служили 25 *N*-замещенных производных хиназолина под лабораторным шифром «ВМА», разделенных на 4 класса, в зависимости от места, числа и структуры гуанидиновых фрагментов. Соединения I класса содержали один линейный фрагмент гуанидина, II класса – два линейных фрагмента гуанидина, III класса – один циклический фрагмент гуанидина и IV класса – два циклических фрагмента гуанидина¹.

Исследования проводились на лабораторных животных следующих видов: 50 нелинейных самцах мышей (возраст 3–4 мес., масса тела 25–30 г); 50 самцах мышей линии C57bl/6J (возраст 3–4 мес., масса тела 20–23 г), 50 самцах крыс линии Wistar (возраст 12–13

¹ Выражаем глубокую признательность сотрудникам Волгоградского государственного медицинского университета, кафедры фармацевтической и токсикологической химии – д.х.н., профессору Озерову А. А. за синтез и предоставление соединений для данной работы.

мес., масса тела 300-350 г), поставленных ООО «НИЦ БМТ» (г. Москва); 150 самцах мышей линии СВА (возраст 6–8 нед., масса тела 18–24 г), поставленных из ФГУП «Питомник лабораторных животных (r. Санкт-Петербург). Животные содержались условиях вивария кафедры фармакологии и фармации Института НМФО ВолгГМУ: в стандартных лабораторных клетках для мелких грызунов, размещенных на вертикальных стеллажах. Температурный режим помещения вивария поддерживался от +18 до +22°C. Освещение вивария обеспечивало стандартные (12 ч. свет /12 ч. темнота) условия размещения. Условия содержания соответствовали требованиям постановления Главного государственного санитарного врача РФ от 29.08.2014 №51 «Об утверждении СП 2.2.1.3218-14 «Санитарно-эпидемиологические требования устройству, К экспериментально-биологических содержанию оборудованию И клиник (вивариев)». Все процедуры, выполняемые с лабораторными животными, порядок их содержания и обращения с ними соответствовал требованиям надлежащей лабораторной практики (ГОСТ 33215-2014 и 33216-2014), принципам, изложенным в Директиве 2010/63/ЕИ (Красильщикова М. С., Белозерцева И. В., этическим были одобрены Локальным государственного Волгоградского медицинского университета (регистрационный № ИРБ 00005839 ИОРГ 0004900. свидетельство №2022/107 от 11.02.2022.

Для комплексного изучения иммунотропной активности исследуемых соединений исследование было разделено на 4 этапа (Таблица 1).

Таблица 1 – Экспериментальные модели, используемые в исследовании

Этап	Название этапа	Экспериментальная модель	Индуктор
I	Скрининг производных хиназолина	Воспалительный ответ в клеточных культурах	Липополисахарид <i>E. coli</i> О111:В4 (Sigma, Израиль) Зимозан А
II	Изучение иммуномодулирующего действия производных хиназолина в условиях системного воспаления	Системный воспалительный ответ	Липополисахарид <i>S. typhimurium</i> (Sigma, Израиль) (5 мг/кг внутрибрюшинно)
III	Изучение иммуномодулирующего действия производных хиназолина в условиях	Острое повреждение легких	Липополисахарид <i>S. typhimurium</i> (Sigma, Израиль) (6 мг/кг орофарингеально)

	острого повреждения		
	легких		
	Изучение		Циклофосфамид
IV	иммуномодулирующего	II. o grave extrance extra	(ЭНДОКСАН®)
1 V	действия в условиях	Иммуносупрессия	(Baxter, Германия)
	иммуносупрессии		(200 мг/кг внутрибрющинно)

На первом этапе исследования был проведен скрининг на первичных клеточных культурах для выявления наиболее активных соединений. Цитотоксичность исследуемых соединений для ПМ В МТТ-тесте И тесте высвобождения опенивали противовоспалительное действие определяли по способности исследуемых соединений подавлять продукцию ИЛ-6 и NO. Также оценивали влияние соединений на функциональную активность ПМ (определение фагоцитарной И киллинговой лизосомальной активности). На культуре ПН изучали влияние соединений на продукцию АФК.

Второй этап был исследования посвящен изучению иммуномодулирующего лействия производных условиях экспериментального системного воспалительного ответа². Противовоспалительное действие исследуемых соединений общее число лейкопитов ПО влиянию на субпопуляционный состав (лейкоцитарная формула), фагоцитарную активность нейтрофилов, уровень провоспалительных цитокинов (ИЛ-6, ИЛ-1β, ФНОα) и индуцибельной NO-синтазы в сыворотке, ЛИ и количество ЯСК селезенки, экспрессию NF-кВ в спленоцитах и уровень ЦИК в сыворотке.

Противовоспалительное действие производных хиназолина оценивали в условиях экспериментального острого повреждения легких (ОПЛ), что являлось целью третьего этапа исследования. иммуномодулирующего Изучение действия проводили общего использованием следующих методов: подсчет субпопуляций лейкоцитов (лейкоцитарная их определение клеточного состава бронхоальвеолярного лаважа (БАЛ) и индекса проницаемости легких. Для оценки влияния производных хиназолина на состояние легочной ткани проводили гистологическое и иммуногистохимическое исследование.

²Выражаем глубокую признательность за помощь в проведении исследования д.б.н, профессору Перфиловой В.Н.

Ha четвертом этапе проводили исследование производных иммуномодулирующего лействия хиназолина экспериментальной иммуносупрессии. условиях Наличие иммунокорригирующих свойств оценивали ПО результатам следующих подсчет общего лейкоцитов тестов: числа лейкоцитарной формулы, определение фагоцитарной активности нейтрофилов, определение лимфоидного индекса тимуса и селезенки и подсчет ЯСК в них, состояние гуморального клеточного звена иммунитета оценивали в РПГА и РГЗТ, соответственно.

Статистическую обработку результатов проводили с использованием программного пакета Microsoft Office Excel 2016 (Microsoft, США) и GraphPad Prism 8.0 (GraphPad Software, США). Оценку достоверности различий между средними значениями в контрольных и опытных группах проводили, используя t-критерий Стьюдента (Герасимов А.Н., 2007) с поправкой Бонферрони, критерий дисперсионный Манна-Уитни анализ (ANOVA) И ДЛЯ **U-критерий** Манна-Уитни параметрических данных И для непараметрических (Платонов А.Е., 2000). Гистологическую оценку морфометрическим легких проводили использованием программы ZEN Pro 2012 (Carl Zeiss, Германия).

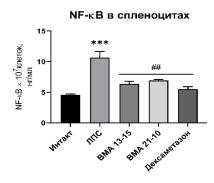
В третьей главе представлены результаты скрининга 25 *N*замешенных производных хиназолина азотсодержащими функциональными группами. В результате были выявлены два соединения с наибольшей иммунотропной активностью: ВМА-21-10 и ВМА-13-15. Соединение ВМА-21-10 статистически значимо подавляло синтез NO в концентрации 100 мкМ, не уступая по активности препарату сравнения, дексаметазону, при этом не влияя на жизнеспособность ПМ в МТТ-тесте. ВМА-21-10 также ингибирует продукцию ИЛ-6 (IC₅₀ = 51.75 мкМ), что свидетельствует о наличии выраженных противовоспалительных свойств у этого соединения. Дополнительное изучение влияния ВМА-21-10 и ВМА-13-15 в зависимости от конечной концентрации и времени экспозиции на жизнеспособность ПМ в МТТ-тесте и тесте высвобождения ЛДГ показало, что данные соединения не проявляют цитотоксических свойств.

По результатам изучения влияния исследуемых соединений на функциональную активность нейтрофилов методом спонтанной и

индуцированной хемилюминесценции³ было установлено, что соединения-лидеры обладают разнонаправленным типом активности: ВМА-21-10 ингибирует продукцию АФК, а то время как ВМА-13-15 стимулирует продукцию АФК. ВМА-21-10 оказывает ингибирует фагоцитарную активность макрофагов в меньшей степени, чем дексаметазон. ВМА-13-15, наоборот, демонстрирует стимулирующее действие.

В четвертой главе представлены результаты изучения иммуномодулирующей активности соединений ВМА-13-15 и ВМА-21-10 в условиях экспериментального системного воспалительного ответа. Исследуемые соединения подавляли иммунопролиферативные процессы в селезенке (Таблица 2).

Таблица 2 — Влияние исследуемых соединений на лимфоидный индекс и количество ядросодержащих клеток у животных с ЛПС-индуцированной патологией


№	Группа	Лимфоидный индекс	Количество ЯСК, ×10 ⁵
1.	Интакт	$3,17 \pm 0,37$	10840 ± 1371
2.	ЛПС	$4,67^* \pm 0,47$	21301*** ± 453
3.	BMA-13-15	$3,23^{\#}\pm0,25$	14665# ± 1810
4.	BMA-21-10	$3,25^{\#}\pm0,36$	16237## ± 1425
5.	Дексаметазон	2,03**** ± 0,187	5256### ± 609

Примечание: * – статистически значимые различия при сравнении с животными контрольной группы (р < 0,05);*** – статистически значимые различия при сравнении с животными контрольной группы (р < 0,001); # – статистически значимые различия при сравнении с животными с ЛПС-индуцированной патологией (р < 0,05); ## – статистически значимые различия при сравнении с животными с ЛПС-индуцированной патологией (р < 0,01); ### – статистически значимые различия при сравнении с животными с ЛПС-индуцированной патологией (р < 0,001); данные представлены в виде «среднее \pm стандартное отклонение»; ANOVA с пост-тестом Данна

Курсовое введение исследуемых соединений статистически значимо снижало ЛИ и ЯСК до значений, сопоставимых с показателями интактных животных. Также ВМА-13-15 и ВМА-21-10 приводили к статистически значимому снижению активации NF-кВ в условиях экспериментальной патологии (Рисунок 1).

_

³ Выражаем глубокую признательность за помощь в проведении исследования к.х.н., с.н.с. Бабкову Д.А.

Рисунок 1 — Влияние исследуемых соединений на экспрессию NF-кВ при ЛПС-индуцированной патологии

Примечание: *** — статистически значимые различия при сравнении с животными контрольной группы (р < 0,001); ## — статистически значимые различия при сравнении с животными с ЛПС-индуцированной патологией (р < 0,01); данные представлены в виде «среднее ± стандартное отклонение»; ANOVA с пост-тестом Ланна.

Подсчет лейкоцитов в крови животных, получавших одно из соединений или дексаметазон, показал, что данный показатель был сравним с таковым у интактных животных. Также ВМА-13-15 и ВМА-21-10 оказывают иммунокорригирующее действие за счет восстановлении субпопуляций лейкоцитов. (Таблица 3).

Таблица 3 — Влияние исследуемых соединений на отдельные субпопуляции лейкоцитов в лейкоцитарной формуле у животных с ЛПС-индуцированной патологией

Nº	Общее число Группа лейкоцитов,		эозинофилов, ба	ии лейкоцитов азофилов и пал йтрофилов), %	очкоядерных
		× 10 ⁹	Сегментоядер. нейтрофилы	Моноциты	Лимфоциты
1.	Интакт	9792 ± 309	$30 \pm 8,59$	$3 \pm 0,1$	$64 \pm 8{,}23$
2.	ЛПС	13410** ± 453	52** ± 10,01	$6^{**} \pm 0.8$	37*** ± 1,02
3.	BMA-13-15	9730 ^{##} ± 586	26### ± 5,15	13### ± 0,89	59## ± 7,34
4.	BMA-21-10	10280## ± 1111	28 ^{##} ± 7,12	8 ± 0.06	61## ± 5,29
5.	Дексаметазон	10263# ± 324	75 ^{##} ± 5,4	$2^{\#\#} \pm 0,1$	20 [#] ± 4,74

Примечание: ** — статистически значимые различия при сравнении с животными контрольной группы (р < 0,01);*** — статистически значимые различия при сравнении с животными контрольной группы (р < 0,001); # — статистически значимые различия при сравнении с животными с ЛПС-индуцированной патологией (р < 0,05); ## — статистически значимые различия при сравнении с животными с ЛПС-индуцированной патологией (р < 0,01); ### — статистически значимые различия при сравнении с животными с ЛПС-индуцированной патологией (р < 0,001); данные представлены в виде «среднее \pm стандартное отклонение»; ANOVA с пост-тестом Данна.

В условиях экспериментальной патологии исследуемые соединения нормализовали показатели функциональной активности нейтрофилов (Таблица 4).

Таблица 4 — Влияние исследуемых соединений на индекс активации нейтрофилов в зимозан-индуцированном и спонтанном НСТ-тесте и фагоцитарную активность нейтрофилов

№	Группа	ИАН в индуцир-ом НСТ-тесте	ИАН в спонтанном НСТ-тесте	Фагоцитарная активность, %	Фагоцитарное число, ед.
1.	Интакт	$1,25 \pm 0,14$	$0,57 \pm 0,04$	$66,0 \pm 3,47$	$6,98 \pm 0,49$
2.	ЛПС	$1,81^* \pm 0,12$	$0.82^* \pm 0.05$	$85,2^* \pm 5,94$	$9,17^{**} \pm 0,14$
3.	BMA-13-15	$1,30^{\#\#}\pm0,1$	$0,59^{\#}\pm0,04$	64,6# ± 5,31	6,59## ± 0,43
4.	BMA-21-10	$1,04^{##} \pm 0,1$	$0,53^{##}\pm0,06$	62,8#± 7,35	5,78### ± 0,54
5.	Дексаметазон	$0,69^{\#\#}\pm0,14$	$0,40^{\#\#}\pm0,1$	17,5### ± 3,77	$3,13^{\#\#}\pm0,36$

Примечание: * — статистически значимые различия при сравнении с животными интактной группы (р < 0,05); # — статистически значимые различия при сравнении с животными с ЛПС-индуцированной патологией (р < 0,05); # — статистически значимые различия при сравнении с животными с ЛПС-индуцированной патологией (р < 0,01); # — статистически значимые различия при сравнении с животными с ЛПС-индуцированной патологией (р < 0,001); данные представлены в виде «среднее \pm стандартное отклонение»; ANOVA с пост-тестом Данна.

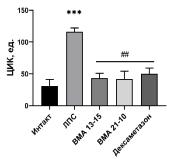
Исследуемые *N*-замещенные производные хиназолина снижали концентрацию индуцибельной NO-синтазы до значений, сопоставимых с таковыми у интактных животных (Таблица 5).

Таблица 5 – Влияние исследуемых соединений на уровень iNOS при ЛПС-индуцированной патологии

Nº	Группа	Уровень iNOS, нг/мл
1.	Интакт	$4,\!91\pm0,\!58$
2.	ЛПС	$10,52^{***} \pm 0,93$
3.	BMA-13-15	$4,38^{###} \pm 0,93$
4.	BMA-21-10	$5,25^{\#}\pm1,1$
5.	Дексаметазон	3,29**** ±1,05

Примечание: *** — статистически значимые различия при сравнении с животными контрольной группы (р < 0,0001); ## — статистически значимые различия при сравнении с животными с ЛПС-индуцированной патологией (р < 0,01); ### — статистически значимые различия при сравнении с животными с ЛПС-индуцированной патологией (р < 0,001); данные представлены в виде «среднее \pm стандартное отклонение»; ANOVA с пост-тестом Данна.

Анализ секреции провоспалительных цитокинов показал, что исследуемые соединения восстанавливают цитокиновую регуляцию иммунного ответа (Таблица 6).

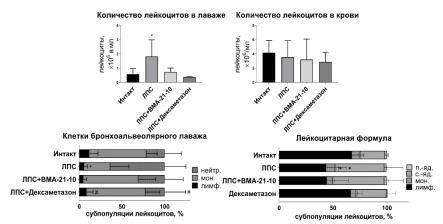

Таблица 6 — Влияние исследуемых соединений на продукцию провоспалительных цитокинов при ЛПС-индуцированной патологии

№	Группа	Секреция ИЛ-6,	Секреция ИЛ-1β,	Секреция ФНОа,
0 12	- p,	пг/мл	пг/мл	пг/мл
1.	Интакт	$43,11 \pm 3,47$	$31,06 \pm 6,21$	$90,36 \pm 3,9$
2.	ЛПС	$81,60^{***} \pm 2,64$	$67,65^{***} \pm 2,95$	$178,46^{***} \pm 7,36$
3.	BMA-13-15	55,59 ^{##} ± 1,96	$49,85^{\#}\pm3,59$	$147,74^{\#}\pm7,92$
4.	BMA-21-10	58,32*** ± 1,61	56 ± 2	141,41# ± 9,24
5.	Дексаметазон	52,03*** ± 2,17	47,29# ± 5,11	118,31# ± 10,56

Примечание: *** — статистически значимые различия при сравнении с животными контрольной группы (р < 0,001); # — статистически значимые различия при сравнении с животными с ЛПС-индуцированной патологией (р < 0,05); ## — статистически значимые различия при сравнении с животными с ЛПС-индуцированной патологией (р < 0,01); данные представлены в виде «среднее \pm стандартное отклонение»; ANOVA с пост-тестом Данна.

Исследуемые соединения и дексаметазон приводили к нормализации уровня циркулирующих иммунных комплексов в сыворотке животных с экспериментальной патологией.

Циркулирующие иммунные комплексы


Рисунок 2 – Влияние соединений ВМА-13-15 и ВМА-21-10 на уровень циркулирующих иммунных комплексов

Примечание: *** — статистически значимые различия при сравнении с животными контрольной группы (р < 0,0001); ## — статистически значимые различия при сравнении с животными с ЛПС-индуцированной патологией (р < 0,001); данные представлены в виде «среднее \pm стандартное отклонение»; ANOVA с пост-тестом Данна.

В **пятой главе** представлены результаты изучения действия соединения ВМА-21-10 в условиях экспериментального ОПЛ.

Введение ВМА-21-10 уменьшало выраженность воспаления: число сегментоядерных нейтрофилов снизилось при увеличении числа моноцитов в БАЛ, на сопоставимом уровне с препаратом сравнения (дексаметазоном). Общее число лейкоцитов и

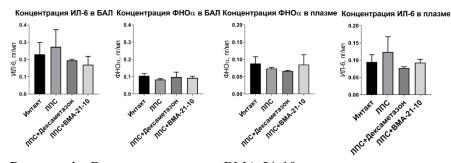
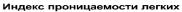

лейкоцитарная формула указывают на то, что соединение ВМА-21-10 не влияло на процессы лейкопоэза (Рисунок 3).

Рисунок 3 — Влияние соединения ВМА-21-10 на содержание лейкоцитов и их субпопуляций в крови и бронхоальвеолярном лаваже у животных с ОПЛ

Примечание: * — статистически значимые различия при сравнении с животными интактной группы (p < 0.05); # — статистически значимые различия при сравнении с животными экспериментальным ОПЛ (p < 0.05); нейтр. — нейтрофилы; мон. — моноциты; п.-яд. — палочкоядерные нейтрофилы; с.-яд. — сегментоядерные нейтрофилы; лимф. — лимфоциты; данные приведены как «среднее \pm стандартное отклонение»; однофакторный ANOVA.


Соединение ВМА-21-10 и дексаметазон нормализовали уровень провоспалительных цитокинов (Рисунок 4), а также препятствовали повышению проницаемости легочных сосудов и, как следствие, развитию отека легких (Рисунок 5).

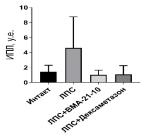


Рисунок 4 – Влияние соединения ВМА-21-10 на уровень цитокинов у животных с ОПЛ

Примечание: * – статистически значимые различия при сравнении с животными интактной группы (p<0.05); # – статистически значимые различия относительно животных с

экспериментальным ОПЛ (p < 0,05); данные приведены как «среднее \pm стандартное отклонение»; однофакторный ANOVA.

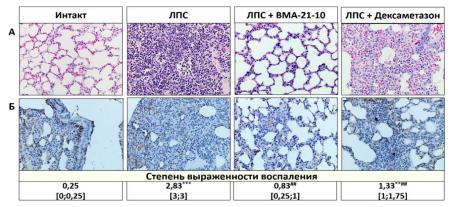


Рисунок 5 — Влияние соединения ВМА-21-10 на проницаемость сосудов альвеол у животных с ОПЛ

Примечание: данные приведены как «среднее \pm стандартное отклонение»; однофакторный ANOVA.

По данным гистологического и иммуногистохимического исследования соединение ВМА-21-10 эффективно снижало воспалительные

явления в легочной ткани, что было подтверждено результатами полуколичественной оценки степени воспаления (Рисунок 6).

Рисунок 6 – Влияние соединения ВМ морфофункциональные показатели легочной ткани

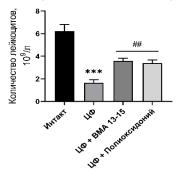
я ВМА-21-10

на

Примечание: А – окраска гематоксилин-эозином; Б – окраска гематоксилином Майера, антитела к СD68 (ПАП-метод); общее увеличение $\times 400$; ЛПС – липополисахарид; **- статистически значимые различия при сравнении с животными интактной группы (р < 0,01); ***- статистически значимые различия при сравнении с животными интактной группы (р < 0,001); ##- статистически значимые различия при сравнении с животными с ЛПС-индуцированным ОПЛ (р < 0,01); данные представлены в виде «М [Q1;Q3]», где М – медиана, Q1, Q3 – нижний и верхний квартили, соответственно.

В **шестой главе** отражены результаты изучения иммуномодулирующей активности соединения ВМА-13-15 на модели иммуносупрессии, вызванной циклофосфамидом (ЦФ).

BMA-13-15 в условиях экспериментальной иммуносупрессии приводит к коррекции пролиферативных процессов в иммунокомпетентных органах (Таблица 7).


Таблица 7 – Влияние соединения ВМА-13-15 на лимфоидный индекс и количество ядросодержащих клеток в селезенке и тимусе у животных с иммуносупрессией, вызванной циклофосфамидом

№	Группа	ЛИ селезенки	ЯСК в селезенке, ×10 ⁵	ЛИ тимуса	ЯСК в тимусе, ×10 ⁵
1.	Интакт	$4,\!38 \pm 0,\!25$	$1376 \pm 137,19$	$1,49 \pm 0,13$	$282,7 \pm 13,09$
2.	ЦФ	$2,41^{***}\pm0,18$	$731,8^{***} \pm 63,91$	$0,69^{***} \pm 0,6$	$187,6^{***} \pm 10,66$
3.	ЦФ+ ВМА-13-15	3,396# ± 0,23	1126,4## ± 86,61	1,1# ± 0,11	231,1# ± 13,48
4.	ЦФ+ Полиоксид оний	3,335# ± 0,277	1056,7## ± 56,27	1,28**** ± 0,11	233,5# ± 10,18

Примечание:*** — статистически значимые различия при сравнении с животными интактной группы (р < 0,001); # — статистически значимые различия при сравнении с животными с ЦФ-индуцированной иммуносупрессией (р < 0,05); ## — статистически значимые различия при сравнении с животными с ЦФ-индуцированной иммуносупрессией (р < 0,01); ### — статистически значимые различия при сравнении с животными с ЦФ-индуцированной иммуносупрессией (р < 0,001); данные представлены в виде «среднее \pm стандартное отклонение»; ANOVA с пост-тестом Данна.

ВМА-13-15 и полиоксидоний статистически значимо (p < 0.05) повышали ЛИ селезенки и тимуса и числа ЯСК в них. Также ВМА-13-15 сопоставимо с полиоксидонием достоверно (p < 0.01) повышало число лейкоцитов (Рисунок 7).

Общее количество лейкоцитов

Рисунок 7 — Влияние соединения ВМА-13-15 на общее число лейкоцитов у животных с иммуносупрессией, вызванной циклофосфамидом

Примечание: *** — статистически значимые различия при сравнении с животными интактной группы (р < 0,001); ## — статистически значимые различия при сравнении с животными с ЦФ-индуцированной иммуносупрессией (р < 0,01); данные представлены в виде «среднее ± стандартное отклонение»; ANOVA с пост-тестом Данна.

ВМА-13-15 частично восстанавливает субпопуляционный состав лейкоцитов (Таблица 8).

Таблица 8 — Влияние соединения ВМА-13-15 на отдельные субпопуляции лейкоцитов в лейкоцитарной формуле у животных с иммуносупрессией, вызванной циклофосфамидом

N.C.	F	Субпопуляции лейкоцитов (без эозинофилов и базофилов), %			
№	Группа	нкп	СЯН	Моноциты	Лимфоциты
1.	Интакт	$1,1 \pm 0,3$	$27,3 \pm 1,56$	$6,8 \pm 0,57$	$62,8 \pm 1,8$
2.	ЦФ	$9,9^{***} \pm 0,6$	39,1*** ± 1,43	6 ± 0,91	42,9*** ± 1
3.	ЦФ + ВМА-13- 15	8,8 ± 0,7	25,9### ± 0,9	$8,3 \pm 0,82$	55,6**** ± 1,5
4.	ЦФ + Полиоксидоний	7,3 ± 0,8	26,8### ± 0,73	5,6 ± 0,79	57,8**** ± 0,7

Примечание: ПЯН-палочкоядерные нейтрофилы; СЯН-сегментоядерные нейтрофилы; *** – статистически значимые различия при сравнении с животными интактной группы (р < 0,001); ### – статистически значимые различия при сравнении с животными с ЦФ-индуцированной иммуносупрессией (р < 0,001); данные представлены в виде «среднее \pm стандартное отклонение»; ANOVA с пост-тестом Данна.

Исследуемое соединение улучшало функциональную активность гуморального и клеточного звена иммунитета на уровне, сопоставимом с препаратом сравнения (Рисунок 8).

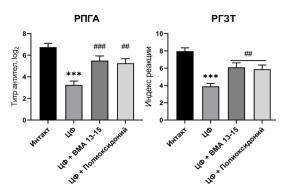


Рисунок 8 — Влияние соединения ВМА-13-15 на гуморальное (РПГА) клеточное (РГЗТ) звено иммунитета у животных с иммуносупрессией, вызванной циклофосфамидом

Примечание: *** – статистически значимые различия при сравнении с животными интактной группы (р

<0,001); ## — статистически значимые различия при сравнении с животными с ЦФ-индуцированной иммуносупрессией (р <0,01); ### — статистически значимые различия при сравнении с животными с ЦФ-индуцированной иммуносупрессией (р <0,001); данные представлены в виде «среднее \pm стандартное отклонение»; ANOVA с пост-тестом Данна.

Соединение ВМА-13-15, не уступая препарату сравнения, улучшает неспецифическую резистентность организма (Таблица 9).

Таблица 9 — Влияние соединения ВМА-13-15 на фагоцитарную активность нейтрофилов животных с иммуносупрессией, вызванной циклофосфамидом

№	Группа	Фагоцитарная активность, %	Фагоцитарное число, ед.
1.	Интакт	$71,5 \pm 1,52$	$8,99 \pm 0,14$
2.	ЦФ	37,1*** ± 1,44	$3,62^{***} \pm 0,11$
3.	ЦФ + ВМА-13-15	63,3**** ± 3,68	$7,84^{\#\#}\pm0,66$
4.	ЦФ + Полиоксидоний	59,4### ± 4,28	6,45### ± 0,33

Примечание: статистически значимые различия при сравнении с животными интактной группы (р < 0.001); ### статистически значимые различия при сравнении с животными индуцированной иммуносупрессией (р < 0.001); данные представлены виде «среднее ± стандартное ANOVA c отклонение»; пост-тестом Данна.

ЗАКЛЮЧЕНИЕ

В результате исследования иммуномодулирующей активности производных хиназолина с *N*-замещенных азотсодержащими группами функциональными были выявлены соединения лабораторными шифрами BMA-13-15, обладающее иммуномодулирующей активностью и ВМА-21-10, обладающее противовоспалительным действием в условиях экспериментальной патологии. Полученные данные свидетельствуют о целесообразности дальнейшего изучения их терапевтического потенциала с целью разработки лекарственных новых препаратов ДЛЯ лечения иммунопатологических состояний.

выводы

- 1. В ходе скрининга *in vitro* в ряду 25 *N*-замещенных производных хиназолина с азотсодержащими функциональными группами были выявлены соединения BMA-21-10 и BMA-13-15, обладающие наиболее выраженной иммуномодулирующей активностью. Для этих соединений были установлены элементы зависимости структура-активность. BMA-13-15, содержит линейный фрагмент гуанидина и метильную группу, а BMA-21-10 два циклических фрагмента гуанидина.
- 2. Соединение ВМА-21-10 (1,3-бис-[(5-амино-1H-1,2,4-триазол-3-ил)метил]-хиназолин-2,4(1H,3H)-дион), обладает выраженной противовоспалительной активностью. В условиях ЛПС-

индуцированной активации перитонеальных макрофагов ВМА-21-10 снижет секрецию ИЛ-6 ($IC_{50} = 51,75$ мкМ) и ингибирует продукцию оксида азота ($IC_{50} = 72,96$ мкМ). Также исследуемое соединение снижает фагоцитарную активность перитонеальных макрофагов на 8,7% и приводит к ингибированию продукции АФК перитонеальными нейтрофилами в концентрации 50 мкМ.

- 3. Соединение ВМА-13-15 (N-[2-[4-оксо-3(4*H*)-хиназолинил]пропионил]-гуанидин), обладает незначительной ингибирующей активностью в отношении iNOS, активирует синтез АФК перитонеальными нейтрофилами дозозависимым образом (в диапазоне концентраций 2–50 мкМ). В модельных условиях *in vitro* ВМА-13-15 стимулирует фагоцитоз, усиливает лизосомальную и киллинговую активность перитонеальных макрофагов.
- 4. Наиболее активные соединения под лабораторными шифрами BMA-21-10, содержащее два циклических фрагмента гуанидина, и BMA-13-15, содержащее линейный фрагмент гуанидина в диапазоне концентраций от 1 до 100 мкМ не оказывают цитотоксическое действие на перитонеальные макрофаги *in vitro* после экспозиции в течение 72 ч, что подтверждается результатами МТТ-теста и теста высвобождения ЛДГ.
- В условиях ЛПС-индуцированного системного воспаления 5. BMA-13-15 BMA-21-10 соединения и оказывают иммуномодулирующий эффект при курсовом введении, что связано с различные системы неспецифической лействием на резистентности, клеточного и гуморального звеньев иммунитета. Об этом свидетельствует снижение пролиферации иммунокомпетентных клеток (ЛИ и ЯСК селезенки), ингибирование активации фактора транскрипции NF-кВ и снижение экспрессии iNOS, следствием чего является уменьшение активности кислородзависимых микробицидных систем нейтрофилов крови и их фагоцитарной активности. Также ВМА-13-15 и ВМА-21-10 приводили к снижению общего числа лейкоцитов в периферической крови и восстановлению процентного соотношения их субпопуляций, ингибированию синтеза провоспалительных цитокинов (ИЛ-1β, ИЛ-6, ФНОα) и снижению синтеза иммуноглобулинов, что выражалось в снижении ЦИК.
- 6. Соединение под лабораторным шифром ВМА-21-10 обладает выраженным противовоспалительным действием при однократном введении в условиях экспериментального ОПЛ, что проявляется нормализацией морфологической картины легочной ткани,

уменьшением явлений экссудации и снижением индекса проницаемости легких.

7. Соединение ВМА-13-15 при курсовом введении на фоне экспериментальной иммуносупрессии, вызванной циклофосфамидом, оказывало выраженное иммунокорригирующее действие, выражавшееся в увеличении ЛИ селезенки и тимуса, повышении общего числа лейкоцитов, сопровождавшееся частичным восстановлением процентного соотношения их субпопуляций, и показателей фагоцитарной активности нейтрофилов. Действие ВМА-13-15 также улучшало состояние клеточного и гуморального звена иммунного ответа, о чем свидетельствовало повышение индекса реакции ГЗТ и титра антител в РПГА.

ПРАКТИЧЕСКИЕ РЕКОМЕНДАЦИИ

- 1. Новые *N*-замещенные производные хиназолина с азотсодержащими функциональными группами под лабораторными шифрами BMA-21-10 и BMA-13-15 рекомендуется представить на рассмотрение как перспективную основу для разработки лекарственных средств, обладающих иммуностимулирующим и иммунокорригирующим действием.
- 2. Рекомендуется проведение доклинических исследований *N*-замещенных производных хиназолина с азотсодержащими функциональными группами под лабораторными шифрами BMA-21-10 и BMA-13-15.
- 3. Модели экспериментальной патологии, используемые в работе, рекомендованы как для скрининга соединений с противовоспалительной и иммуномодулирующей активностью *in vitro*, так и для поиска подходов к коррекции воспалительного процесса и восстановления нарушенной функции иммунной системы *in vivo*.

СПИСОК ОПУБЛИКОВАННЫХ РАБОТ ПО ТЕМЕ ДИССЕРТАЦИИ:

Статьи в ведущих рецензируемых научных журналах, рекомендованных Минобрнауки РФ

- 1. Spasov, A., Kosolapov, V., Babkov, D., Klochkov, V., Sokolova, E., Miroshnikov, M., **Borisov, A.**, Velikorodnaya, Y., Smirnov, A., Savateev, K., Fedotov, V., Kotovskaya, S., & Rusinov, V. (2022). Discovery of Nitro-azolo[1,5-a]pyrimidines with Anti-Inflammatory and Protective Activity against LPS-Induced Acute Lung Injury. **Pharmaceuticals** (Basel, Switzerland), 15(5), 537. doi: 10.3390/ph15050537.
- 2. Spasov, A., Ozerov, A., Vassiliev, P., Kosolapov, V., Gurova, N., Kucheryavenko, A., Naumenko, L., Babkov, D., Sirotenko, V., Taran, A., Litvinov, R., **Borisov, A.**, Klochkov, V., Merezhkina, D., Miroshnikov, M., Uskov, G., & Ovsyankina, N. (2021). Synthesis and multifaceted pharmacological activity of novel quinazoline NHE-1 inhibitors. **Scientific reports**, 11(1), 24380. doi: 10.1038/s41598-021-03722-w.
- 3. **Борисов А. В.,** Тарасов А.С., Озеров А. А., Самотруева М. А. Влияние производных хиназолин-4(3H)-она на морфофункциональные свойства перитонеальных макрофагов // **Астраханский медицинский журнал,** -2021. №2.

Статьи в журналах и сборниках материалов конференций:

- 1. Борисов А.В. Влияние нового производного хиназолина гуанидиновым компонентом на пролиферативные процессы иммунокомпетентных органах. // В книге: Материалы Всероссийской научной конференции молодых ученых, посвященной 95-летию со дня профессора A.A. Никулина "Достижения современной фармакологической науки". Под ред. Е.Н. Якушевой. Рязань. – 2018. – С. 22-23.
- 2. **Борисов А.В.** Иммунотропные свойства нового производного хиназолина с гуанидиновым компонентом в условиях иммунносупрессии. // В сборнике: Сборник тезисов Медицинского профессорского форума «Межотраслевая интеграция и передовые технологии в здравоохранении». Ярославль. 2018. C.79-80.
- 3. Kosolapov V.A., Spasov A.A., Vasil'ev P.M., Babkov D.A., Smirnov A.V., **Borisov A.V.**, Miroshnikov M.V., Rusinov V.L., Rusinov G.L. The search for compounds to prevent the consequences of a cytokine storm. // В сборнике: MedChem-Russia 2021. Материалы конференции 5-ой Российской

конференции по медицинской химии с международным участием. Волгоград. – 2021. – C. 83. doi: 10.19163/MedChemRussia2021-2021-83.

4. **Борисов А.В.**, Соколова Е.В., Озеров А.А., Тюренков И.Н. Влияние производных хиназолин-4(3H)-она на жизнеспособность перитонеальных макрофагов мыши. // В сборнике: MedChem-Russia 2021. Материалы конференции 5-ой Российской конференции по медицинской химии с международным участием. Волгоград. — 2021. — С. 476. doi: 10.19163/MedChemRussia2021-2021-476.

ПЕРЕЧЕНЬ СОКРАЩЕНИЙ И УСЛОВНЫХ ОБОЗНАЧЕНИЙ

NF-кВ – ядерный фактор «каппа-би»

АФК – активные формы кислорода

БАЛ – бронхоальвеолярный лаваж

ИЛ – интерлейкин

ЛДГ – лактатдегидрогеназа

ЛИ – лимфоидный индекс

ЛПС – липополисахарид

ОПЛ – острое повреждение легких

ПМ – перитонеальные макрофаги

ПН – перитонеальные нейтрофилы

РГЗТ – реакция гиперчувствительности замедленного типа

РПГА – реакция прямой гемагглютинации

ФНОα – фактор некроза опухоли α

ЦФ – циклофосфамид

ЯСК- ядросодержащие клетки

БОРИСОВ АЛЕКСАНДР ВЛАДИМИРОВИЧ

ИММУНОМОДУЛИРУЮЩАЯ АКТИВНОСТЬ *N*-ЗАМЕЩЕННЫХ ПРОИЗВОДНЫХ ХИНАЗОЛИНА С АЗОТСОДЕРЖАЩИМИ ФУНКЦИОНАЛЬНЫМИ ГРУППАМИ В УСЛОВИЯХ ЭКСПЕРИМЕНТАЛЬНОЙ ПАТОЛОГИИ

3.3.6. – Фармакология, клиническая фармакология

АВТОРЕФЕРАТ

Диссертации на соискание ученой степени кандидата медицинских наук

Подписано в печать	2022 г.
Формат 60х84/16. Бумага офсетная	я. Печать трафаретная.
Печ. л.1,0. Тираж 100 экз. 3	Заказ №

Издательство Волгоградского государственного технического университета. 400005, г. Волгоград, просп. им. В.И. Ленина, 28, корп. №7.