ГБОУ ВПО ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ МИНИСТЕРСТВА ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

На правах рукописи

Садикова Наталья Владимировна

КОРРЕКЦИЯ ПРОИЗВОДНЫМИ ГЛУТАМИНОВОЙ КИСЛОТЫ СТРЕССОРНЫХ ПОВРЕЖДЕНИЙ СЕРДЦА

14.03.06 Фармакология, клиническая фармакология

Диссертация

на соискание ученой степени кандидата медицинских наук

Научный руководитель: член-корреспондент РАН, ЗРВШ РФ, доктор медицинских наук, профессор Тюренков Иван Николаевич

Научный консультант: с.н.с. лаборатории фармакологии сердечно-сосудистых средств НИИ фармакологии ВолгГМУ, доктор биологических наук Перфилова Валентина Николаевна

ОГЛАВЛЕНИЕ

ОГЛАВЛЕНИЕ2
ВВЕДЕНИЕ4
ГЛАВА 1. СТРЕССОРНОЕ ПОВРЕЖДЕНИЕ МИОКАРДА, МЕХАНИЗМЫ
ЗАЩИТЫ (ОБЗОР ЛИТЕРАТУРЫ)11
1.1 Патофизиология стресса
1.2 Повреждающее действие стресса на сократимость миокарда
1.3 NO- и ГАМК-ергические стресс-лимитирующие системы
1.4 Стресс и старение
1.5 Фармакологические свойства глутаминовой кислоты
ГЛАВА 2. МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ40
ГЛАВА 3. ПОИСК ВЕЩЕСТВ С КАРДИОПРОТЕКТОРНЫМ ДЕЙСТВИЕМ
СРЕДИ ПРОИЗВОДНЫХ ГЛУТАМИНОВОЙ КИСЛОТЫ52
3.1 Изучение влияния производных глутаминовой кислоты на функциональные
резервы сердца стрессированных животных
3.2 Изучение зависимости кардиопротекторного эффекта соединения РГПУ-238
от дозы61
ГЛАВА 4. ОЦЕНКА КАРДИОПРОТЕКТОРНОГО ДЕЙСТВИЯ СОЕДИНЕНИЯ
РГПУ-238 В УСЛОВИЯХ БЛОКАДЫ СТРЕСС-ЛИМИТИРУЮЩИХ СИСТЕМ 65
4.1 Влияние исследуемого соединения на ино- и хронотропные резервы сердца
при блокаде различных NO-синтаз 65
4.2 Изучение действия соединения РГПУ-238 на функциональные резервы
сердца стрессированных животных в условиях блокады ГАМК _А -рецепторов 74

ГЛАВА 5. ОЦЕНКА КАРДИОПРОТЕКТОРНОГО ДЕЙСТВИЯ СОЕДИНЕНИЯ
РГПУ-238 У СТРЕССИРОВАННЫХ ЖИВОТНЫХ РАЗНЫХ ВОЗРАСТНЫХ
ГРУПП77
5.1 Влияние соединения РГПУ-238 и фенибута на функциональные резервы сердца крыс-самок в возрасте 6, 12 и 24 месяцев в условиях острого иммобилизационно-болевого стрессирования
5.2 Влияние соединения РГПУ-238 и фенибута на функциональные резервы сердца 12 и 24 месячных крыс-самцов при хроническом стрессорном воздействии
ГЛАВА 6. ИЗУЧЕНИЕ МЕХАНИЗМА ДЕЙСТВИЯ НОВОГО ПРОИЗВОДНОГО ГЛУТАМИНОВОЙ КИСЛОТЫ93
6.1 Оценка антиоксидантных и антигипоксических свойств соединения РГПУ- 238 при стрессорном повреждении миокарда
6.2 Оценка эндотелиопротекторных свойств соединения РГПУ-238 при стрессорном повреждении миокарда
6.3 Влияние соединения РГПУ-238 на показатели системы гемостаза 102
у животных, подвергшихся хроническому стрессорному воздействию 102
6.4 Мембранопротекторное действие соединения РГПУ-238 105
ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ
ВЫВОДЫ
НАУЧНО-ПРАКТИЧЕСКИЕ РЕКОМЕНДАЦИИ124
СПИСОК СОКРАЩЕНИЙ125
СПИСОК ЛИТЕРАТУРЫ128

ВВЕДЕНИЕ

Актуальность темы исследования

В настоящее время сердечно-сосудистые заболевания (ССЗ) продолжают оставаться ведущей причиной инвалидизации и смертности взрослого населения (Беленков Ю.Н. и др., 2006; De Paula J.G. et al., 2014). По оценкам всемирной организации здравоохранения, в 2012 году от ССЗ умерло 17,5 миллиона человек, что составило 31% всех случаев смерти в мире¹. Наиболее часто болезни сердца возникают В результате воздействия стресса, который ПО данным крупномасштабных международных исследований (INTERHEART), был признан третьим по значимости среди 9 независимых факторов риска развития острого коронарного синдрома (Yusuf S. et al., 2004).

Проблема стресса с годами становится все более острой в связи с ростом отрицательного влияния социальных факторов на здоровье человека, что провоцирует заболеваний сердечно-сосудистых (коронарная рост инфаркт недостаточность, миокарда, аритмии, гипертоническая болезнь, атеросклероз) (Templin C. et al., 2015; Kop W.J. et al., 2015; Lampert R., 2015; 2016; Inan B. et al., 2016; Crump C. et al., 2016; Yano Y. et al., 2016).

Известно, что длительное и интенсивное стрессорное воздействие вызывает депрессию сократительной функции, что проявляется снижением скорости сокращения и расслабления миокарда, ударного и минутного объемов, а так же ино- и хронотропных резервов сердца (Меерсон Ф.З. и др., 1988; Пшенникова М.Г., 2000; Перфилова В.Н. и др., 2007; 2009; Prasadam I. et al., 2012; Jain M. et al., 2013; Champion S. et al., 2015; Cohen R. et al., 2016; Fontes M.A. et al., 2016).

Степень патогенного воздействия при развитии стресс-реакции во многом определяется состоянием NO- и ГАМК-ергической стресс-лимитирующих систем, способных оказывать ограничивающее влияние при действии стрессорного фактора на центральном и периферических уровнях (Малышев И.Ю. и др., 2000;

¹Сердечно-сосудистые заболевания. Информационный бюллетень ВОЗ. - № 317. - Январь 2015 г.

Манухина Е.Б. и др., 2000; Cordellini S. et al.,1998; Vaiva G. et al., 2004; Gulati K. et al., 2006).

С возрастом в сердечно-сосудистой системе (ССС) происходят морфофункциональные изменения, вызывающие снижение функциональных резервов сердца и развитие сердечной недостаточности. Физиологические изменения ССС, возникающие при старении, приводят к снижению способности миокарда оптимально реагировать на повреждающие стрессорные воздействия (Кhan M. et al., 2012; Kwak H.B., 2013; Zhang Y. et al., 2014; Ikeda Y. et al., 2014).

В связи с вышеизложенным является актуальным поиск и создание новых эффективных кардиопротекторных лекарственных препаратов, способных активировать стресс-лимитирущие системы, ограничивать последствия стрессорного воздействия у пациентов разного возраста за счет влияния на его патогенетические звенья.

В качестве таких веществ можно рассматривать глутаминовую кислоту (ГК) и ее производные, так как в многочисленных экспериментальных и клинических исследованиях показано наличие кардиопротекторных, противоаритмических, противофибрилляторных, антигипоксических свойств, а также способности ограничивать процессы перекисного окисления липидов (ПОЛ) и повышать активность антиоксидантных ферментов (Удинцев Н.А. и др., 1984; Калинина Е.В. и др., 2003, 2007; Филатова Н.М. и др., 2009; 2012; Блинов Д.С. и др., 2012; Игнатов Ю.Д. и др., 2012; Багметова В.В. и др., 2012; Гогина Е.Д. и др., 2012; Максимова Л.Н. и др., 2013; Крыжановский С.А. и др., 2013).

Степень разработанности проблемы

Повреждение сердца при длительном стрессорном воздействии и поиск эффективных способов его ограничения и предупреждения является в последние десятилетия предметом комплексных физиологических, биохимических, цитологических и фармакологических исследований (Перфилова В.Н. и др., 2007; 2009; Прохоренко И.О. и др., 2011; Крыжановский Г.Н., 2011; Хугаева В.К. и др., 2012; Prasadam I. et al., 2012). В качестве потенциальных стресс- и кардиопротекторов рассматриваются производные нейроактивных аминокислот.

Стресс-реакция, вызванная различными факторами, сопряжена с активацией ГАМК-ергической стресс-лимитирующей системы в головном мозге и, в первую повышением интенсивности биосинтеза ГАМК 2-3 ингибиторным влиянием ее на секрецию «гормонов и медиаторов стресса» кортикотропин-рилизинг-фактора, АКТГ, вазопрессина и катехоламинов (Carrasco G.A. et al., 2003; Verkuyl J.M. et al., 2005; Blacktop J.M. et al., 2016; Goddard A.W., 2016; Partridge J.G. et al., 2016). Известно, что один из метаболитов ГАМКергической системы - у-оксимасляная кислота (ГОМК) - подавляет стрессреакцию, способствует снижению концентрации кортикостерона и катехоламинов в надпочечниках, плазме крови и миокарде (Меерсон Ф.З., 1984). Вальпроевая ингибитор ГАМК-трансферазы кислота ограничивает окислительного стресса в сердце. Фенибут и его производное цитрокард (цитрат фенибута) ингибируют процессы перекисного окисления липидов, повышают функциональные резервы сердца в постстрессорный период (Тюренков И.Н. и др., 1981).

Глутаминовая кислота является предшественником ГАМК, способностью поддерживать операционном при стрессе сократительную функцию миокарда в раннем послеоперационном периоде при операциях на сердце (Шмерельсон М.Б. и др., 1990), снижать степень миокардиальной контрактуры и защищать сердце от реперфузионных повреждений, улучшать коронарное кровообращение (Удинцев Н.А. и др., 1984). У ГК и ее производных выявлены антигипоксические и антиоксидантные свойства (Макарова Л.М. и др., 2013). Вместе с тем, взаимодействие производных глутаминовой кислоты со стресс-лимитирующими системами и их кардиопротекторные эффекты в условиях стресса не изучены.

Цель исследования

Поиск веществ с кардиопротекторной активностью среди новых производных глутаминовой кислоты в условиях стрессорного повреждения миокарда и изучение некоторых аспектов механизма их действия.

Задачи исследования

- 1. Провести скрининг веществ с кардиопротекторным действием среди производных глутаминовой кислоты.
- 2. Проанализировать зависимость между химической структурой и специфической активностью исследуемых веществ.
- 3. Определить зависимость кардиопротекторного эффекта наиболее активного соединения от дозы, острую суточную токсичность и широту терапевтического действия.
- 4. Исследовать влияние нового производного глутаминовой кислоты на функциональные резервы сердца стрессированных животных в условиях блокады NO- и ГАМК-ергической систем.
- 5. Оценить влияние наиболее активного соединения на ино- и хронотропную функции сердца у животных разного возраста, подвергшихся острому иммобилизационно-болевому и хроническому стрессированию.
- 6. Изучить действие исследуемого соединения на вазодилатирующую и антитромботическую функцию эндотелия стрессированных животных.
- 7. Исследовать влияние на процессы ПОЛ и активность антиоксидантных ферментов, мембранопротекторные и антигипоксические свойства нового производного глутаминовой кислоты у крыс в условиях стрессорного воздействия.

Научная новизна исследования

Впервые проведен целенаправленный поиск веществ с кардиопротекторным действием среди 9 новых производных глутаминовой кислоты в условиях стрессорного повреждения миокарда, проанализирована зависимость между химической структурой исследуемых веществ и их специфической активностью. Выявлено соединение под лабораторным шифром РГПУ-238, обладающее выраженной способностью ограничивать повреждающее влияние острого и хронического стрессорного воздействия на миокард, о чем свидетельствует его способность повышать функциональные резервы сердца у животных разных возрастных групп и модулировать NO-ергическую систему и ГАМК_А-рецепторы.

Впервые изучены некоторые аспекты механизма действия исследуемого вещества в условиях стресса, показано влияние его на вазодилатирующую и антитромботическую функции эндотелия животных, на процессы ПОЛ и активность антиоксидантных ферментов в сердце, мембранопротекторные и антигипоксические свойства.

Теоретическая и практическая значимость работы

Результаты выявленных закономерностей между кардиопротекторным действием новых производных глутаминовой кислоты и их химической структурой могут служить основой для направленного синтеза, дальнейшего поиска и разработки высокоактивных и малотоксичных веществ со стресс- и Способность кардиопротекторной активностью. соединения РГПУ-238 ограничивать негативное влияние острого и хронического стресса на миокард у разных возрастных групп свидетельствует возможности перспективности разработки на его основе лекарственного препарата для предупреждения стрессорных повреждений миокарда.

Результаты проведенного исследования включены в материалы лекций и практических занятий для студентов на кафедрах фармакологии Волгоградского государственного медицинского университета, Ростовского государственного медицинского университета, Воронежского государственного медицинского университета им. Н.Н. Бурденко, Пятигорского медико-фармацевтического института - филиала ВолгГМУ, для интернов и фармацевтических специалистов, проходящих последипломное усовершенствование на кафедре фармакологии и биофармации ФУВ ВолгГМУ. Методические подходы к поиску, доклиническому фармакологическому изучению веществ с кардиопротекторными свойствами используются в научно-исследовательской работе кафедр фармакологии, фармакологии и биофармации ФУВ, НИИ фармакологии ВолгГМУ, кафедре фармакологии Пятигорского медико-фармацевтического института.

Методология и методы исследования

В проведённом исследовании использовался комплексный подход по изучению кардиопротекторных свойств новых производных глутаминовой

кислоты в условиях стрессорного повреждения миокарда. Оценка влияния соединения РГПУ-238 на функциональные резервы сердца проводилась при блокаде стресс-лимитирующих систем, а также у разных возрастных групп с использованием моделей острого и хронического стрессирования.

Дизайн исследования соответствовал международным рекомендациям Европейской конвенции по защите позвоночных животных, используемых при экспериментальных исследованиях (1997).

В качестве теоретической и методологической основы использовались методические рекомендации по доклиническому изучению лекарственных средств отечественных и зарубежных ученых по данной проблеме, с применением рекомендованных методов статистической обработки данных.

Положения, выносимые на защиту

- 1. Актуален поиск высокоэффективных соединений с кардиопротекторными свойствами в ряду производных глутаминовой кислоты.
- 2. Соединение РГПУ-238 повышает функциональные резервы стрессированного миокарда животных и в условиях блокады NO-ергической системы и ГАМК_А-рецепторов.
- 3. При остром и хроническом стрессе соединение РГПУ-238 улучшает ино- и хронотропную функции сердца у крыс различного возраста, более существенно в группе старых животных.
- 4. Соединение РГПУ-238 нормализует вазодилатирующую и антитромботическую функции эндотелия стрессированных животных, ограничивает процессы ПОЛ, повышает активность антиоксидантных ферментов в сердце, оказывает мембранопротекторное и антигипоксическое действие.

Личный вклад

Автором самостоятельно проведен поиск и анализ отечественных и зарубежных источников литературы по изучаемой проблеме, выполнена экспериментальная часть работы, проведены статистическая обработка и описание результатов исследования. Автор принимал участие в формулировке

задач, выводов и научно-практических рекомендаций. При его участии проведен подбор методов и дизайн исследования, разработаны протоколы экспериментов.

Степень достоверности и апробация результатов

Достоверность результатов исследования подтверждается достаточным объемом экспериментальных данных, применением специализированного и высокотехнологичного оборудования, общепринятых методов и критериев Материалы работы докладывались и статистической обработки данных. обсуждались на VI съезде фармакологов России «Инновации в современной фармакологии» (Казань, 2012), 70-ой открытой научно-практической конференции молодых ученых и студентов с международным участием проблемы экспериментальной «Актуальные И клинической медицины» (Волгоград, 2012), V Международном молодежном медицинском конгрессе «Санкт-Петербургские научные чтения-2013» (Санкт-Петербург, 2013), 72-ой открытой научно-практической конференции молодых ученых и студентов ВолгГМУ «Актуальные участием c международным проблемы экспериментальной и клинической медицины» (Волгоград, 2014, диплом II степени). По материалам диссертации опубликовано 24 печатные работы, в том числе 9 – в рецензируемых журналах, рекомендованных ВАК Минобрнауки РФ, и 2 патента на изобретения.

Объем и структура диссертации

Диссертация изложена на 160 страницах машинописного текста и состоит из введения, обзора литературы, главы материалы и методы, 4 глав собственных исследований, обсуждения результатов, выводов, научно-практических рекомендаций, списка сокращений и списка литературы, включающего 297 источников, из них 136 отечественных и 161 зарубежных авторов. Работа проиллюстрирована 9 таблицами и 14 рисунками.

ГЛАВА 1. СТРЕССОРНОЕ ПОВРЕЖДЕНИЕ МИОКАРДА, МЕХАНИЗМЫ ЗАЩИТЫ (ОБЗОР ЛИТЕРАТУРЫ)

«Ничто так не истощает и не разрушает организм человека, продолжительное физическое бездействие», — писал древнегреческий философ Аристотель. Созданные цивилизацией и научно-техническим прогрессом гиподинамия (снижение силовых нагрузок) и гипокинезия (ограничение двигательной активности) оказывают отрицательное влияние на системы кровообращения, дыхания, обмен веществ, нервные и гуморальные регуляторные механизмы, опорно-двигательный аппарат и непременно ведут к снижению организма и стрессоустойчивости. В реактивности последнее время последствиям стресса относят различные психосоматические заболевания расстройства, заболевания сердечно-сосудистой невротические системы, кровообращения, нарушения мозгового язвенная болезнь желудка двенадцатиперстной кишки, отдельные злокачественные опухоли и другие (Miller D. et al., 2002; Robles T. et al., 2005; Filaretova L. et al., 2013).

1.1 Патофизиология стресса

Основоположником учения о стрессе является канадский ученый Ганс Селье, уделявший особое внимание биологическим и физиологическим аспектам проблемы стресса (Селье Г., 1979).

В функциональном и морфологическом отношении стресс выражается общим адаптационным синдромом, имеющим определенные и хорошо известные стадии: тревоги и мобилизации, повышенной резистентности и истощения (Селье Г., 1979). Способность организма сопротивляться внешним повреждающим факторам изменяется в ходе этих стадий, как показано на графике (Рисунок 1).

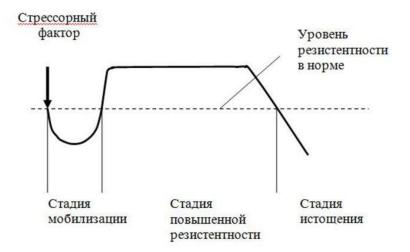


Рисунок 1. Динамика уровня резистентности организма в зависимости от стадии стресса (Апчел В.Я. и др., 1999).

Стадия тревоги возникает в момент действия стрессорного фактора и может продолжаться в течение 48 ч после начала его воздействия. Ее выраженность зависит от силы и продолжительности действия раздражителя. Эта стадия, характеризующаяся временным снижением сопротивляемости, переходит затем в стадию резистентности, т. е. на качественно более высокий уровень (Селье Г., 1979).

В случае прекращения воздействия стрессорного агента вызванные им изменения в организме (гормональные, структурно-метаболические сдвиги) постепенно нормализуются, выраженных патологических последствий не наступает (Меерсон Ф.З. и др., 1988).

Когда же патогенный раздражитель имеет чрезмерную силу или действует длительно, многократно, то адаптационные возможности организма могут оказаться несостоятельными, что приведет к потере резистентности и развитию стадии истощения (там же). Для этой стадии характерно снижение активности симпато-адреналовой системы, угнетение всех защитных процессов в организме, абсолютная недостаточность глюкокортикоидов, обусловленная истощением пучковой зоны коры надпочечников. В этой стадии в организме преобладают

минералокортикоиды, которые во многих отношениях являются антагонистами глюкокортикоидов (Ronald de Kloet E., 2003) (Рисунок 2).

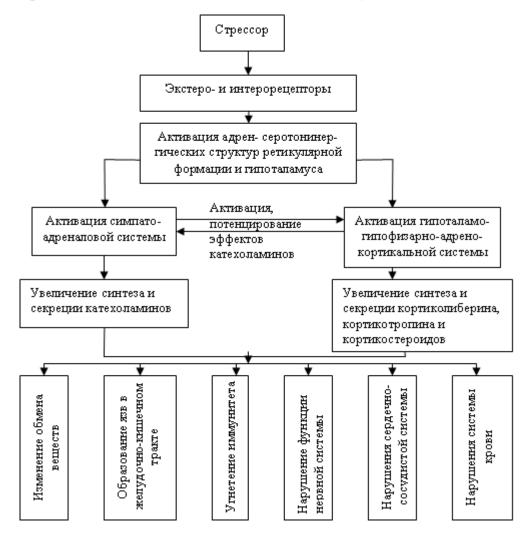


Рисунок 2. Общий патогенез стресса.

Реализация стресс-реакции осуществляется посредством центрального и периферического звеньев стресс-системы (Пшенникова М.Г., 2000; 2001; Bhatnagar S. et al., 2004). Центральным звеном является гипоталамус, который получив информацию о появлении стрессора, запускает работу всей стресссистемы, координирует эндокринные, метаболические и поведенческие реакции организма. Активация паравентрикулярного ядра гипоталамуса приводит к освобождению кортикотропин-рилизинг-гормона, стимулирующего секрецию адренокортикотропного гормона (АКТГ) (Пшенникова М.Г., 2000; Bailey T.W. et al., 2003). Последний в свою очередь, вызывает повышенное выделение

глюкокортикоидов из пучковой зоны коры надпочечников: у человека - кортизола (гидрокортизона), а у крыс – кортикостерона (Рисунок 3).

Активация заднего гипоталамуса приводит к повышению тонуса симпатикоадреналовой системы, усиливается освобождение норадреналина из симпатических нервных окончаний, а из мозгового вещества надпочечников выделяется в кровь адреналин, что приводит к значительному повышению уровня катехоламинов (КХ) в крови (Апчел В.Я. и др., 1999).

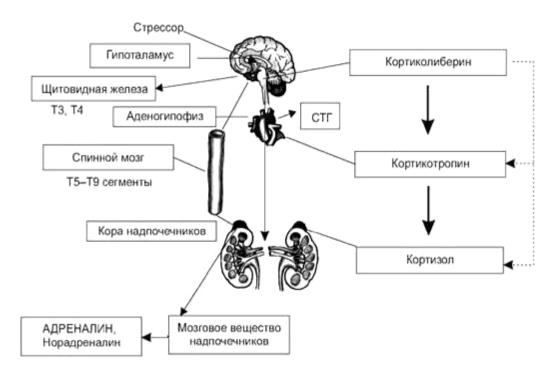


Рисунок 3. Механизм формирования стресса (Апчел В.Я. и др., 1999).

В развитии стресс-реакции принимают участие и другие гормоны и биологически активные вещества. Установлено, что активация переднего гипоталамуса под влиянием стрессорных факторов увеличивает экспрессию вазопрессина и его секрецию в гипофизе, активируя гипоталамо-гипофизарнонадпочечниковую ось. Вазопрессин рассматривается как фактор, потенцирующий эффект кортиколиберина и способствующий высвобождению АКТГ, а также повышающий активность симпатической нервной системы, что усиливает ее действие при стрессе (Тигранян Р.А. и др., 1988).

При симпатической нервной активации гипоталамуса системы И промежуточной доли гипофиза и усиливается секреция В-эндорфинов ИЗ метэнкефалинов надпочечников (Пшенникова М.Г.. 1987). Согласно ИЗ литературным данным опиоидные пептиды принимают участие в регуляции секреции гипоталамических гормонов и гормонов аденогипофиза, являются модуляторами активности коры надпочечников, угнетают процессы выделения катехоламинов (Curtis A.L. et al., 2001).

Установлено, что серотонин играет ключевую роль в развитии стрессреакции (Carrasco G.A. et al., 2003; Mahar I. et al., 2014). Накоплено много данных, свидетельствующих о том, что истощение серотонина повышает тревожность у людей, а препараты, повышающие уровень серотонина, оказывают успокаивающее действие, особенно у пациентов, страдающих генерализованным тревожным расстройством и паническими атаками (Kirby et al., 2000; Kuhn M. et al., 2014; Yee A. et al., 2015).

Роль тиреоидной эндокринной системы в формировании стресса остается спорной, поскольку получены противоречивые данные продукции тиреотропного гормона $(TT\Gamma)$ гипофиза И функциональной активности щитовидной железы (Надольник Л.И., 2010). Ряд авторов выявили, что в условиях стресса усиливается секреция ТТГ, что предполагает повышение функции щитовидной железы (Киселева Н.М. и др., 2010; Helmreich D.L. et al., 2011). Другие, наоборот, утверждают, что функция щитовидной железы ингибируется в связи с подавлением секреции ТТГ под воздействием высокой концентрации АКТГ (Лейкок Дж.Ф. и др., 2000). Такое расхождение в полученных данных предположить, определенных обстоятельствах позволяет что при неспецифические эффекты стрессора ΜΟΓΥΤ модифицироваться его специфическими свойствами. Ряд исследователей, изучая влияние острого и хронического стресса на общую устойчивость организма у крыс, выявили, что щитовидной железы приводит к резкому снижению подавление функции резистентности организма, тогда как введение физиологических доз тиреоидных гормонов способствует ее повышению (Городецкая И.В. и др., 2011).

Широко известным фактом является то, что глюкагон играет важную роль в развитии стресса, выработка которого повышается под влиянием катехоламинов. Однако избыточная продукция катехоламинов тормозит секрецию другого гормона поджелудочной железы – инсулина (Paneni F. et al., 2015).

Согласно последним данным установлено, что в развитии стресс-реакции принимают участие ряд биологически активных веществ, потенцирующих или опосредующих эффекты основных реализующих звеньев стресс-системы. К таким веществам относят ангиотензин II, нейропептид Y, субстанцию Р и некоторые интерлейкины. (Апчел В.Я. и др., 1999). Известно, что нейропептид Y (NPY) опосредует свои физиологические эффекты через четыре рецептора: Y (1), Y (2), Y (4) и Y (5). Наиболее распространенными рецепторами семейства NPY являются У (1) и У (2) - рецепторы, которые в большей степени присутствуют в коре головного мозга, гиппокампе и миндалине. Эти области мозга связаны прежде всего с расстройствами настроения, реакцией на стресс и памятью. В связи с этим был проведен ряд исследований у грызунов, которые показали, что У (1) и Y (2) рецепторы участвуют в развитии стресс-реакции. Также по результатам недавних исследований авторы предполагают, что Y (4) и Y (5) рецепторы вовлечены в процессы, связанные с эмоциями, у грызунов (Morales-Medina J.C. et al., 2010). Исследователи университета Мичиган обнаружили, что люди, чьи гены вырабатывают низкие уровни нейропептида Y, более чувствительны отрицательным стимулам, связанными с эмоциями, поступающими в головной мозг и, следовательно, менее устойчивы к стрессу и подвержены высокому риску развития сильного депрессивного расстройства (Mickey B.J. et al., 2011).

Многочисленные данные показывают, что провоспалительный цитокин - интерлейкин-1 (IL-1β) играет важную роль в нейроэндокринных и поведенческих реакциях стресса (Miller D. et al., 2002; Robles T. et al., 2005; Gądek-Michalska A. et al., 2013). В частности, установлено, что продукция IL-1β является важным звеном в активации гипоталамо-гипофизарно-адреналовой системы и секреции глюкокортикоидов (Goshen I. et al., 2009). Многим исследователям удалось выявить высокий уровень IL-1β и IL-6 после воздействия стрессорного фактора

(Brydon L. et al., 2005; Smith W.S. et al., 2007; Gądek-Michalska A. et al., 2015). Некоторые авторы предполагают, что стресс-индуцированная активация IL-1 является одной из причин, приводящих к развитию сердечно-сосудистых заболеваний, поскольку известно, что оба интерлейкина играют ключевую роль в развитии атеросклероза (Brydon L. et al., 2005).

Большинство исследований указывает на анксиогенную роль вещества субстанции Р при развитии стресс-реакции, которая является нейропептидом из семейства тахикининов и находится в структурах головного мозга, отвечающих за физиологию боли (Jessop D.S. et al., 2000; Wang L. et al., 2015). Три основных нейрокининовых рецептора опосредуют действие тахикининов: NK1, NK2 и NK3рецепторы, которые имеют большее сродство к субстанции Р, нейрокинину А и нейрокинину В (Okano et al., 2001; Carrasco G.A. et al., 2003). Активация рецепторов NK1 увеличивает частоту сердечных сокращений, артериальное давление и активность симпатической нервной системы (Claire H.F. et al., 2014). Наиболее изученным в настоящее время при стрессорном повреждении является NK1- рецептор, тем не менее, роль NK2 и NK3- рецепторов не исключается al., (Delgado-Morales R. et 2012). Установлено, что каскад активации нейрокининовых рецепторов при развитии стресс-реакции включает в себя синтез G белков, фосфолипазы C и выход внутриклеточного кальция, а также открытие кальциевых каналов в плазматической мембране (Bradesi S. et al., 2009; Chen P. et al., 2012).

С действием высоких концентраций катехоламинов связывают также интенсификацию процессов перекисного окисления (Meerson F.Z., 1983). Под влиянием продуктов ПОЛ – гидроперекисей липидов – происходят образование свободных радикалов, лабилизация лизосом, освобождение протеолитических ферментов и образование высокотоксичных продуктов – альдегидов, кетонов, спиртов. Накопление токсичных продуктов ПОЛ мембраносвязанных вызывает повреждение ферментов, нарушение мембранного транспорта, что в конечном итоге приводит к гибели клеток

(Мальцев А.Н. и др., 2010; Pal R. et al., 2011; Pertsov S.S. et al., 2011; Menabde K.O. et al., 2011).

Еще одним из неблагоприятных факторов стресса является длительная гиперлипидемия. Активация липолиза ведет к образованию свободных жирных кислот - донаторов энергии для интенсивно функционирующих органов. Их использование сопряжено с повышением потребления кислорода. При его дефиците утилизация свободных жирных кислот нарушается, происходит их накопление, вызывающее ряд патологических процессов: жировое перерождение печени, повышение свертываемости крови и тромбоз сосудов, развитие атеросклероза, гипертонической болезни (Devaki M. et al., 2013; Inoue N., 2014). Кроме того, стресс-реакция характеризуется активацией фосфолипаз, что сопровождается перераспределением фосфолипидов, образованием лизофосфолипидов, обладающих детергентными свойствами. В результате этого меняются структурная организация, фосфолипидный и жирно-кислотный состав липидного слоя мембран, что приводит к инактивации мембраносвязанных рецепторов клеток, ионных каналов и насосов (Апчел В.Я. и др., 1999; Devaki M. et al., 2013).

Так же известно, что при чрезмерно сильной или затянувшейся стрессреакции избыточная продукция норадреналина вызывает увеличение поступления ионов Ca²⁺ в клетки, что в сочетании с избытком свободных жирных кислот приводит к набуханию митохондрий, к разобщению окислительного фосфорилирования и дефициту АТФ. Все эти процессы в совокупности оказывают токсический эффект на клетку и приводят к ее гибели (Wu J.J. et al., 2009; Givvimani S. et al., 2015).

Таким образом, стресс-реакция при определенных условиях может превратиться из звена адаптации организма к различным факторам в звено патогенеза различных заболеваний. В настоящее время показана роль стресса как главного этиологического фактора ишемической болезни сердца, гипертонической болезни, атеросклероза. Стресс, особенно хронический, способствует также развитию иммунодефицитных состояний, аутоиммунных

заболеваний, неврозов, импотенции, бесплодия, онкологических заболеваний и др. (Robles T. et al., 2005; Filaretova L. et al., 2013; Kato H. et al., 2015; Zelena D., 2015; Luisi S. et al., 2015; Colucci R. et al., 2015).

1.2 Повреждающее действие стресса на сократимость миокарда

Впервые, Г.Селье в 1979 г. обнаружил транзиторные гистологические изменения в миокарде крыс, подвергшихся иммобилизационному стрессу.

Американский исследователь Bernard Lown, продолжая исследования Г.Селье, доказал, что при стрессе происходят значительные изменения электрической стабильности сердца, снижается порог желудочковой фибрилляции и может развиться внезапная остановка сердца (Lown B. et al., 1980). Ряд исследователей подтвердили негативное воздействие стресса на миокард и сердечно-сосудистую систему в целом (Меерсон Ф.З., 1984; Marilyn S.C. et al., 1980; Viskin S. et al., 1990).

Исследования на животных и клинические наблюдения показали, что сигнал о внешнем стрессоре воспринимается соответствующими рецепторами и по таламо-кортикальной системе передается в таламус и далее в нейроны основной коры больших полушарий, отвечающие за вход в кору. Там сигнал поступает во фронтальную кору, из которой начинается кортико-стволовой путь, соединяющий ее с таламусом, гипоталамусом и ядрами ствола мозга, непосредственно связанными с регуляцией сердца. Основным звеном этого пути является гипоталамус, который «собирает» информацию от вышележащих отделов головного мозга, а также с периферии, в том числе от сердца. Из гипоталамуса информация при участии стволовых ядер — «синего пятна», двойного ядра и др. — поступает в нейроны ядер продолговатого и спинного мозга, осуществляющих симпатическую и парасимпатическую иннервацию сердца. При этом именно преобладание симпатического выхода на сердце создает аритмогенную ситуацию. Холодовая блокада подкорковой зоны и амигдалы вызывает предупреждение возникновения аритмий при эмоциональном стрессе, а

также фибрилляции сердца и гибель животных при острой ишемии сердца (Мороз Б.Б., 2001).

Меерсон Ф.З. множество трудов посвятил изучению проблемы стресса, патофизиологии сердца и механизму антистрессорных реакций организма. Патогенез стрессорного повреждения миокарда согласно Ф.З. Меерсону складывается из: высоких концентраций катехоламинов, активации перекисного окисления липидов, лабилизации лизосом, повреждения продуктами ПОЛ и протеолитическими ферментами мембран сарколеммы и нарушения транспорта кальция в миокардиальных клетках, что приводит к развитию кальциевой контрактуры и гибели клеток (Меерсон Ф.З. и др., 1988).

При возникновении стрессорной ситуации возбуждение высших вегетативных центров приводит к многократному увеличению действующей на сердце концентрации катехоламинов и активации аденилатциклазы, вследствие чего происходит нарушение работы ионных каналов клеток сердца. Это приводит к чрезмерному поступлению ионов Ca2+ в кардиомиоциты, мобилизации и уменьшению резерва гликогена, сдвигу внутриклеточного метаболизма В преобладания процессов белков кардиомиоцитов сторону распада нуклеиновых кислот над их ресинтезом, активации ПОЛ и реализации липидной триады (Меерсон Ф.З. и др., 1993). Последняя, в свою очередь, приводит к повреждению лизосомальных мембран и, как следствие, к освобождению протеолитических ферментов (Chen F. et al., 2009). При действии лизосомальных ферментов и нарушениях в системе гликолиза развиваются повреждения мембран ретикулума, саркоплазматического нарушается сарколеммы И кальциевого насоса, что приводит к нарастанию избытка Ca²⁺ в саркоплазме. Последний, может активировать совокупность процессов, составляющих липидную триаду, и таким образом усугубляет повреждение миокарда. Вовторых, кальциевая перегрузка в кардиомиоцитах вызывает развитие комплекса изменений (кальциевая триада), слагающегося из контрактуры миофибрилл, нарушения функции митохондрий, перегруженных кальцием и активации миофибриллярных протеаз и митохондриальных фосфолипаз, что значительно

усугубляет повреждение (Lee Y.P. et al., 2008). В результате возникают необратимая контрактура и некробиоз отдельных групп кардиомиоцитов и выраженные нарушения сокращения и расслабления сердца (Рисунок 4).

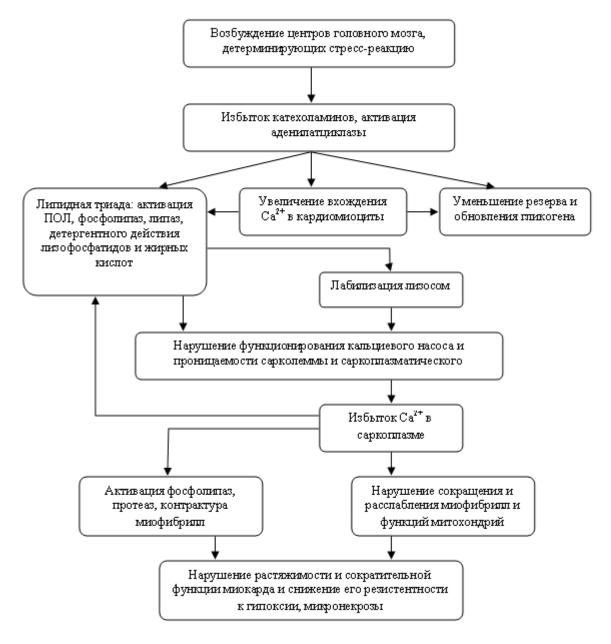


Рисунок 4. Патогенетическая цепь стрессорного повреждения миокарда (Пшенникова М.Г., 2000).

В настоящее время широко исследовано влияние эмоционального стресса на сердечный ритм и коронарный кровоток (Перфилова В.Н., 2009; Khanna D. et al., 2006; Bacon S.L. et al., 2006; Sawai A. et al., 2007). Результаты последних клинических испытаний убедительно показывают, что эмоциональный стресс

вызывает обратимую дисфункцию миокарда у пациентов (Derian W. et al., 2007; Lee Y.P. et al., 2008; Chen F. et al., 2009; Prasadam I. et al., 2012).

На изолированных сердцах и кардиомиоцитах крыс и кроликов было показано, что перегрузка кальцием может также приводить к спонтанным осцилляциям Ca^{2+} , что в некоторых случаях вызывает задержанные постдеполяризации, экстрасистолы, и приводят к фибрилляции желудочков и аритмии (Кацнельсон Л.Б. и др., 2007).

Данные многих исследований свидетельствуют, что представленная патогенетическая цепь реализуется не только в кардиомиоцитах, но также в миоцитах артерий и артериол и приводит к развитию стойкого спазма сосудов, который играет определенную роль в типичных для клиники стрессорных нарушениях коронарного, мозгового и периферического кровообращения (Хугаева В.К. и др., 2012). Некоторые экспериментальные исследования стресса что однократное воздействие различных показали, ПО характеру чрезвычайных продолжительности раздражителей вызывает однотипные нарушения в микрососудах у разных видов животных (Прохоренко И.О. и др., 2011). Изменения возникают в трех участках микрососудистого русла: внутри микрососудов; в стенке микрососудов; во внесосудистом пространстве (Glazachev O.S. et al., 2012).

Внутрисосудистые нарушения микроциркуляции заключаются в замедлении кровотока вплоть до полного стаза, агрегации эритроцитов в виде «монетных столбиков», плазматизации сосудов (микрососуды, заполненные плазмой без эритроцитов и лейкоцитов, что часто бывает связано со спазмом сосудов, из которых притекает кровь в данный плазматический сосуд) (Крыжановский Г.Н., 2011; Прохоренко И.О. и др., 2011; Glazachev O.S. et al., 2012; Jain M. et al., 2013).

На уровне стенки микрососудов возникает увеличение сосудистой проницаемости, вызванное экзоцитозом и дегрануляцией тучных клеток, расположенных в периваскулярной ткани вдоль микрососудов. Во внесосудистом пространстве увеличивается численность тучных клеток наряду с разрушением их

мембраны. Первоначальная реакция тучных клеток на чрезвычайное воздействие состоит в увеличении секреции гистамина путем экзоцитоза. Далее происходит дегрануляция тучных клеток с выбросом в ткань огромного числа (более 35) биологически активных веществ, участвующих в регуляции сосудистого тонуса, проницаемости стенки микрососудов, реологических свойств крови и др. Наряду с этим, возрастает высвобождение катехоламинов из адренергических нервных окончаний, оплетающих и иннервирующих микрососуды. Увеличивается число артериоло-венулярных анастомозов, что рассматривается как адаптивная реакция микроциркуляторного русла на повреждение (Хугаева В. К. и др., 2012; Cuisset T. et al., 2011).

Время нормализации кровотока в микрососудах в постстрессорном периоде зависит от характера и продолжительности действия стрессора и коррелирует с состоянием тучных клеток. Корреляция прямая: после разрушения мембраны биологически активные вещества тучных клеток воздействуют на стенку микрососудов, проникают в просвет микрососудов и влияют на реологические свойства крови. Чем больше тучных клеток дегранулировано, тем больше нарушений микроциркуляции (Хугаева В.К. и др., 2012).

В экспериментальных исследованиях показано, что хронический стресс вызывает, с одной стороны, повреждение эндотелия сосудов, запуская процессы атерогенеза, с другой – активацию симпато-адреналовой системы, что приводит к повышенной вазоконстрикции и активации тромбоцитов (Yusuf S. et al., 2004).

Согласно литературным данным, при тяжелом и длительном стрессорном воздействии наблюдается депрессия сократительной функции сердца, проявляющаяся снижением скорости сокращения и расслабления миокарда, ударного и минутного объемов и уменьшением функциональных резервов сердца (Меерсон Ф.З. и др., 1988; Пшенникова М.Г., 2000; Перфилова В.Н. и др., 2007). Падение сократительной активности сердца приводит к развитию сердечной недостаточности (Перфилова В.Н., 2009).

Имеются данные о том, что непрерывная активация р38 MAP-киназы играет решающую патофизиологическую роль в развитии стресс индуцированной дисфункции миокарда (Chen F. et al., 2009; Prasadam I. et al., 2012).

Некоторые исследователи, изучая влияние длительного иммобилизационого стресса на электрическую стабильность желудочка у крыс, обнаружили, что вызванные иммобилизацией изменения имеют тесную связь со степенью свободных радикалов в ткани миокарда (Bian J.S. et al., 1997).

1.3 NO- и ГАМК-ергические стресс-лимитирующие системы

Активность и реактивность стресс-системы регулируются двумя основными механизмами: саморегуляции и внешней регуляции. Механизм внешней регуляции осуществляется стресс-лимитирующими системами, способными ограничивать чрезмерную стресс-реакцию на центральном и периферическом уровнях регуляции (Меерсон Ф.З. и др., 1993; Малышев И.Ю. и др., 1998; Пшенникова М.Г., 2000).

К основным центральным стресс-лимитирующим системам относят ГАМК-ергическую, представляющую собой группу нейронов, продуцирующих гамма-аминомасляную кислоту (ГАМК), обладающую тормозным действием на нейроны головного и спинного мозга (Vaiva G. et al., 2004). В частности установлено, что ГАМК-нейроны находятся в тесной взаимосвязи с нейронами, которые вырабатывают кортикотропин-рилизинг-гормон (КРГ), гормон аргининвазопрессин (АВ) и норадреналин (НА) (Шабанов П.Д. и др., 2011; 2012). В ответ на развитие стресс-реакции выделяющиеся НА, КРГ и АВ стимулируют ГАМК-нейроны, которые в свою очередь секретируют ГАМК и тем самым приводят к ограничению активности стресс-системы в целом (Liu Y.W. et al., 2013).

ГАМК способна оказывать тормозное действие не только на центральном уровне, но и на периферии (Тюренков И.Н. и др., 2001; Перфилова В.Н. и др., 2005). Поскольку рецепторы для ГАМК локализованы на аксонах симпатических нейронов, иннервирующих органы и ткани, а также в самих органах, это

обеспечивает ограничение высвобождения катехоламинов и их влияния (Пшенникова М.Г., 2000). Важно отметить, что повторные стрессорные воздействия вызывают не только активацию стресс-лимитирующих систем, но и приводят к повышению мощности (эффективности) этих систем (Мороз Б.Б., 2001) (Рисунок 5).

Многочисленные данные экспериментальных и клинических исследований показывают, что ГАМК-ергические вещества способны снижать тонус мозговых сосудов и улучшать кровоснабжение головного мозга (Гаевый М.Д. и др., 2000; Акопян В.П., 2003; Мирзоян Р.С., 2003; Тюренков И.Н. и др., 2009); участвовать в процессах ауторегуляции мозгового кровотока, оказывать протективное действие на миокард (Акопян В.П., 2003; Мирзоян Р.С., 2005; Snyder S.H. et al., 2000; Smith W.S., 2004); улучшать реологические свойства крови (Гречко О.Ю., 2000; Тюренков И.Н. и др., 2007); подавлять глутаматно-кальциевый каскад (Луньшина Е.В. и др., 2002; Островская Р.У., 2003; Мирзоян Р.С., 2005; Наѕbani М.J. et al., 2001); предупреждать разрушительное действие продуктов ПОЛ и повышать активность антиоксидантных систем (Тюренков И.Н. и др., 2000; Smith W.S., 2004); способствовать нормализации качественного и количественного состава фосфолипидов и оказывать протективное влияние на мембранные структуры нервной ткани (Мирзоян Р.С., 2003; Тюренков И.Н. и др., 2012).

Рисунок 5. Ограничение стресс-реакции при активации ГАМК-системы (Пшенникова М. Г., 2000).

В настоящее время к стресс-лимитирующим системам относят систему оксида азота (NO), являющуюся универсальным медиатором и регулятором физиологических функций организма (Крыжановский Г.Н., 2002). Роль NO в стресс-реакции определяется его свойствами, а также тем, что при стрессе происходит резкое изменение его продукции в разных органах и тканях (Малышев И.Ю. и др., 1998; Манухина Е.Б. и др., 2002). Установлено, что NO-система отвечает основным критериям стресс-лимитирующей системы: 1) активируется под действием стресса; 2) ограничивает выброс и (или) продукцию стресс-гормонов; 3) ограничивает стрессорные повреждения организма; 4) при экзогенном введении увеличивает, а ингибиторы синтеза NO снижают

устойчивость организма к стрессу, а также адаптивные возможности организма; 5) активируется в процессе адаптации к повторным стрессорным воздействиям (Манухина Е.Б. и др., 2000) (Рисунок 6).

В ряде исследований было выявлено ингибирующее влияние оксида азота на гипоталамо-гипофизарно-надпочечниковую систему за счет подавления выработки вазопрессина, что тем самым ограничивает развитие стресс-реакции (Крыжановский Г.Н., 2002; Мацко М.А., 2004; Plotnikoff N.P. et al., 2006).

Установлено, что симпатоадреналовое звено стресс-системы опосредовано NO-ергической иннервацией, так как в небольших концентрациях оксид азота угнетает высвобождение катехоламинов из надпочечников и симпатических нервных окончаний, приводя к ограничению стресс-реакции (Herbert J. et al., 2006).

Симпатоадреналовая активность вызывает стимуляцию еще одной важной оси - ренин-ангиотензиновой. При проведении ряда исследований было обнаружено, что система оксида азота принимает участие в регуляции секреции ангиотензина II, ограничивая тем самым функцию ренин-ангиотензиновой системы, а также способствует поддержанию водно-электролитного баланса в организме (Мацко М.А., 2004; Kamal E. et al., 2001).

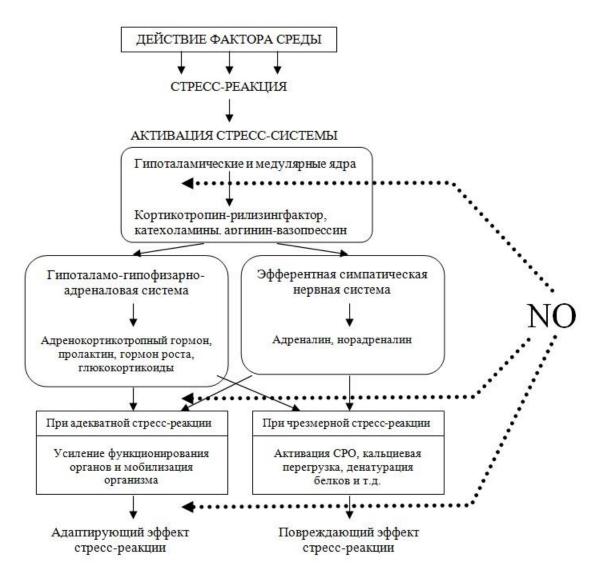


Рисунок 6. Ингибирующее влияние NO в развитии стресс-реакции (Малышев И.Ю. и др., 1998).

Установлено, что продукция оксида азота в миокарде осуществляется коронарным эндотелием, эндокардом и кардиомиоцитами (Muller-Strahl G. et al., 2000). Кардиотропные эффекты NO широки. В настоящее время выявлено, что оксид азота оказывает положительный инотропный эффект, участвует в регуляции тонуса коронарных сосудов, ускоряет релаксацию, укорачивает период сокращения миокарда, улучшает его растяжимость в диастоле (Парахонский А.П., 2010). Экспериментальные данные показывают, что нарушение продукции эндотелиальными клетками оксида азота является одним из факторов патогенеза

ишемических и стрессорных повреждений миокарда, приводящих к дисфункции сосудистого эндотелия (Марков Х.М., 2005).

Экспериментальные данные показывают, что моделирование L-NAME-индуцированного дефицита оксида азота вызывает развитие комплекса морфофункциональных изменений сосудистой стенки и кардиомиоцитов. Также показано преобладание нарушения эндотелийзависимого расслабления сосудов, сопровождавшегося уменьшением количества стабильных метаболитов оксида азота (Ершов И.Н., 2009).

Снижение уровня NO в миокарде вызывает существенное нарушение его кардиотропных эффектов. При проведении ряда исследований, некоторым авторам удалось выявить эффекты NO на изолированные кардиомиоциты (Muller-Strahl G. et al., 2000). Было показано, что низкие концентрации NO, которые имеют место в нормальных физиологических условиях, оказывают положительное инотропное действие, в то время, как высокие вызывают негативное инотропное влияние (Парахонский А.П., 2010).

Таким образом, в зависимости от концентрации NO, места продукции и функционального состояния организма оксид азота может проявлять кардиопротекторные либо кардиодепрессивные эффекты (Волошин Л.В. и др., 2006; Сомова Л.М. и др., 2006; Парахонский А.П., 2010; Muller-Strahl G. et al., 2000; Bolli R., 2001).

В кардиомиоцитах оксид азота синтезируется превращением L-аргинина в L-цитруллин при участии 3-х NO-синтаз: конститутивных —нейрональной, эндотелиальной (nNOS и eNOS) и индуцибельной (iNOS) (Buchwalow I.B. et al., 2001; Krenek P. et al., 2009).

Активность конститутивных NO-синтаз зависит от внутриклеточной концентрации ионов кальция и, таким образом, повышается при увеличении их уровня в клетке (Takeda M. et al., 2001). Конститутивные NO-синтазы участвуют в важных физиологических процессах, происходящих в сердце, за счет выработки базального и стимулируемого уровня оксида азота, который оказывает

положительный инотропный эффект, способствует укорочению периода сокращения и расслабления миокарда (Парахонский А.П., 2010).

Нейрональная **NO-синтаза** локализована В саркоплазматическом ретикулуме, участвует в циклическом перемещении кальция и в осуществлении сопряжения возбуждения с сокращением. Имеются данные, что снижение концентрации nNOS приводит к нарушению NO/редокс-баланса, оказывая многочисленные отрицательное влияние на сигнальные процессы кардиомиоцитах (Парахонский А.П., 2010; Khan S.A. et al., 2004). Кроме этого, установлено, что нейрональная NO-синтаза способна ограничивать активность ксантиноксиредуктазы, которая является главным источником супероксиданиона (Khan S.A. et al., 2004).

Эндотелиальная NOS синтезируется сосудистыми эндотелиальными клетками, кардиомиоцитами и др (Atochin D.N. et al., 2010). В кровеносных сосудах eNOS продуцирует NO, действуя как вазодилататор, тем самым регулируя поток крови и давление (Schmidt A. et al., 2008). При проведении исследований было выявлено, что у мутантных eNOS-нокаутных мышей артериальное давление на 30% выше, чем у животных дикого типа (Penninger J., 1998). В кардиомиоцитах экспрессия eNOS составляет 20% от общего содержания NOS в сердце. Установлено, что eNOS влияет на поток Ca₂₊ в кардиомиоцитах и на сократимость сердца (Woodman O.L. et al., 2000; Андреева Л.А. и др., 2013).

Индуцибельная NOS экспрессируется при различных патологических процессах в кардиомиоцитах и лейкоцитах. Активность iNOS не зависит от уровня кальция/кальмодулина (Сосунов А.А., 2000). Данная изоформа NO-синтаз продуцирует значительно большее количество оксида азота, чем конститутивные синтазы. Экспериментальные данные показывают, что длительное стрессорное воздействие приводит к уменьшению экспрессии eNOS и усилению экспрессии iNOS. В результате этого повышенная концентрация NO оказывает на клетки токсический эффект, связанный как с прямым действием на железосодержащие ферменты, так и с образованием пероксинитрита (ONOO-), что приводит к

повреждению клеток сердца (Сосунов А.А., 2000). В связи с этим, индуцибельная изоформа NO-синтаз считается патологической.

Таким образом, дисфункция сосудистого эндотелия, вызванная дефицитом оксида азота, играет существенную роль в патогенезе сердечно-сосудистых заболеваний. Это дает основание предполагать, что поддержание соответствующими лекарственными средствами NO/редокс-баланса должно иметь важное терапевтическое значение при лечении последствий стресса, самыми важными из которых являются нарушения сердечно-сосудистой системы. А также, в связи с вышесказанным, является перспективным поиск веществ, способных активировать ГАМК-систему и тем самым оказывать ограничивающее влияние на развитие стресс-реакции и ее повреждающих эффектов.

1.4 Стресс и старение

За последние несколько столетий средняя продолжительность жизни выросла более чем вдвое, что является результатом глубоких экономических, технологических и социальных изменений, в т.ч. усовершенствования и разработки новых лекарственных средств, вакцин, проведения сложных операций на сердце и т.п. Широкое распространение сердечно-сосудистых заболеваний среди возрастной патологии (Фролькис В.В. и др., 1994; Коркушко О.В. и др., 2012) объясняется тем, что при старении способность оптимально реагировать на стрессогенные воздействия постепенно теряется, а чувствительность сердца к действию стрессорных факторов повышается (Lakatta E.G. et al., 2001; Snyder-Mackler N. et al., 2014).

В одном из исследований показано, что с возрастом как у мужчин, так и у значений показателей, женщин, отмечается закономерное снижение характеризующих максимальную производительность системы гемодинамики. Установлено, старении причиной что при снижения максимальной производительности системы транспорта кислорода являются морфофункциональные сердечно-сосудистой изменения системы,

энергетического обмена и нейро-гуморальной регуляции работы сердца (Коркушко О.В. и др., 2012).

Известно, что важными факторами риска развития ССЗ являются возрастные изменения сосудов (Стражеско И.Д. и др., 2013), приводящие к развитию атеросклероза, артериальной гипертонии и другим патологическим процессам. С возрастом усиление фиброза и микрокальцификации элементов проводящей системы вызывает увеличение ригидности сосудов, повышение их общего периферического сопротивления, создающего дополнительную нагрузку на миокард (Преображенский Д.В. и др., 2005; Лішневська В.Ю. и др., 2008). Снижение эластических свойств, растяжимости и повышение ригидности стенки крупных артериальных сосудов является основной причиной возрастного повышения АД, в первую очередь систолического (Lakatta E.G. et al., 2003).

С возрастом снижается интенсивность тканевого дыхания, изменяется сопряжение окисления и фосфорилирования, снижается активность митохондриальной креатинфосфокиназы, количество аденозинтрифосфата (АТФ) и креатинфосфата, активируется гликолиз (Chin-Hao W. et al., 2013; Kong Y. et al., 2014). При старении изменяется минеральный обмен, в частности увеличивается содержание внутриклеточного натрия и кальция, уменьшается содержание калия, магния, что может приводить к уменьшению амплитуды потенциала действия мышечного волокна (Фролькис В.В. и др., 1994).

С возрастом отмечается развитие очаговой атрофии мышечных волокон с явлениями белково-липоидной дистрофии, накоплением амилоида и липофусцина в кардиомиоцитах, снижением объема саркоплазматического ретикулума (Гуревич М.А., 2008). В миокарде при старении отмечается развитие миокардиального фиброза, увеличение содержания коллагена в сочетании с изменением его структуры, что проявляется в увеличении поперечных сшивок. Такие изменения коллагеновой ткани приводят к повышению пассивной жесткости сердца (Лишневская В.Ю. и др., 2010). Содержание коллагена также увеличивается вокруг сосудов и в интерстициальном пространстве (Lin J. et al., 2008). Помимо этого, в межклеточном матриксе увеличивается аккумуляция

липидов и снижается содержание гликогена (Lin J. et al., 2008). Очаговый фиброз и кальцификация клапанов, развивающиеся при старении, способствуют гемодинамическим нарушениям (Chen Y.T. et al., 1999).

В ряде исследований выявлено изменение соотношения содержания изоформ миозина при старении в сторону преобладания медленных изоформ, что тесно коррелирует с возрастным снижением максимальной скорости изотонического сокращения (Besse S. et al., 1993).

Установлено, что с возрастом снижается реактивность барорецепторов, сокращается количество β-адренорецепторов, однако их чувствительность к токсическому влиянию катехоламинов повышается, что обусловливает высокий риск развития стресс-ишемии и опасных для жизни нарушений ритма (Преображенский Д.В. и др., 2005; Лішневська В.Ю. и др., 2008).

Хроно- и инотропные характеристики являются важным показателем функционального состояния сердечной мышцы и отражают эффективность сопряжения в миокарде возбуждения с сокращением. Многочисленные исследования показывают снижение сократительной способности миокарда при старении (Фролькис В.В. и др., 1994; Lakatta E.G. et al., 2003), что связано с нарушениями в электромеханическом сопряжении, вызванном изменением внутриклеточного обмена Ca²⁺ и активностью саркоплазматического ретикулума кардиомиоцита (Lakatta E.G. et al., 2003).

Литературные данные показывают, что с возрастом наряду с изменением сократимости снижается скорость расслабления миокарда (Zile M. et al., 2002). Авторы связывают данный эффект со снижением активности натрий-кальциевого обмена, поскольку расслабление волокон миокарда зависит от скорости удаления ионов кальция из саркоплазмы и аккумуляции их в саркоплазматическом ретикулуме (Lakatta E.G. et al., 2003). Замедление процесса расслабления миокарда обусловливает ухудшение диастолической функции левого желудочка у пожилых людей (Nguyen C.T. et al., 2001; Zile M. et al., 2002).

Во многих экспериментальных работах выявлено возрастное снижение максимальной ЧСС в ответ на физическую нагрузку (Schmidlin O. et al., 1992;

Schwartz J.B., 1997; Cao X.J. et al., 2009). Однако механизм этого явления остается не совсем ясным. Ряд авторов связывают его с уменьшением лабильности синусового узла и функции автоматизма с возрастом (Opthof T., 2000). Другие - с ослаблением симпатических экстракардиальных влияний, снижением хронотропного ответа на катехоламины в старости (Коркушко О.В. и др., 1991; Lakatta E.G. et al., 2003). Также на урежение ЧСС с возрастом может влиять общее понижение тонуса вегетативных влияний на сердечный ритм (Коркушко О.В. и др., 2012).

Основными пусковыми механизмами патологических процессов, связанных со старением, считаются окислительный стресс (ОС) и хроническое воспаление, ключевую роль в развитии которых играет гиперактивация ренин-ангиотензинальдостероновой системы (РААС) (Калинченко С.Ю. и др., 2014; Lorenza E. et al., 2012; Merksamer I.P. et al., 2013; Poljsak B. et al., 2013). Экспериментальные данные свидетельствуют, что с возрастом концентрация ангиотензина II в ткани миокарда у грызунов увеличивается (Dai D.F. et al., 2009; Benigni A. et al., 2009; Stein M. et al., 2010). Вероятно, это связано с возрастанием уровня тканевого ангиотензинпревращающего фермента (Lakatta E.G. et al., 2003). Ангиотензин II кардиомиоцитов, вызывывает гипертрофию стимулирует пролиферацию фибробластов и синтез белков экстрацеллюлярного матрикса (Rosenkranz S., 2004).

В одном исследований авторами была ИЗ изучена взаимосвязь функционального состояния эндотелия, эритроцитов, тромбоцитов с состоянием показателей свободнорадикального окисления у практически здоровых людей разного возраста. Было показано, что в старшей возрастной группе имеет место активация процессов свободнорадикального окисления (СРО) при снижении активности антиоксидантной защиты, о чем свидетельствовало достоверное, по сравнению с группой молодых, увеличение содержания в плазме крови малонового диальдегида, низкий уровень СОД и отсутствие адекватного прироста каталазы и глутатиона в ответ на усиление процессов пероксидации. Также были выявлены нарушение сосудодвигательной функции эндотелия, увеличение

агрегационной активности эритроцитов и тромбоцитов, увеличение вязкости крови при различных скоростях сдвига. Результаты проведенного авторами корреляционного анализа позволили им предположить о взаимосвязи нарушения показателей функционального состояния гемоваскулярного гомеостаза некомпенсированной активацией **CPO** (Лишневская В.Ю., 2004; 2010). Увеличение образования свободных радикалов в сердце при старении играет важную роль в патогенезе возрастзависимого фиброза сердца (Беликова М.В. и др., 2014). Они оказывают как прямое воздействие на сердечные фибробласты, так и опосредованное, через модуляцию сигналов различных цитокинов (Yan L.J., 2014). Свободные радикалы стимулируют влияние цитокинов и ангиотензина II на фибробласты. Они могут индуцировать выработку воспалительных и фиброгенных медиаторов, играющих роль в развитии возрастзависимого фиброза (Shaw P.X. et al., 2014). Наибольшему риску повреждения свободными радикалами подвергаются митохондриальная ДНК, липиды протеины митохондрий (Cui H. et al., 2012).

1.5 Фармакологические свойства глутаминовой кислоты

Глутаминовая кислота — основной возбуждающий нейромедиатор центральной нервной системы, участвует в регуляции высших интегративных функций мозга, условно-рефлекторной деятельности, эмоций, болевой чувствительности, мышечных сокращений и др. (Петров В.И. и др., 2002).

Согласно литературным данным, ЦНС находится порядка 1*10⁶ глутаматергических нейронов. Тела нейронов лежат в коре головного мозга, обонятельной луковице, гиппокампе, чёрной субстанции, мозжечке. В спинном мозге — в первичных афферентах дорзальных корешков (Shigeri Y. et al., 2004).

Глутамат, взаимодействуя с рецепторами, увеличивает проницаемость мембраны для ионов натрия, вызывает деполяризацию и возбуждающий эффект. Существуют рецепторы глутамата, связанные с ионными каналами: NMDA, AMPA, каинатные рецепторы (Antonius M., 2008). В химических синапсах

глутамат запасается в пресинаптических пузырьках (везикулах). Нервный импульс запускает высвобождение глутамата из пресинаптического нейрона. На постсинаптическом нейроне глутамат связывается с постсинаптическими NMDA-рецепторами и активирует их (Groc L. et al., 2007). Благодаря участию последних в синаптической пластичности, глутамат вовлечен в такие когнитивные функции, как обучение и память (McEntee W.J. et al., 1993).

При повреждении мозга или заболеваниях глутамат накапливается снаружи клетки, что приводит к поступлению большого количества ионов кальция в клетку через каналы NMDA-рецепторов, что в свою очередь вызывает повреждение и гибель клетки (Hynd M. et al., 2004).

На основе глутаматергических веществ созданы препараты с ноотропным (мемантин), анальгетическим (кетамин), противосудорожным (ламотриджин) действием и др. (Петров В.И. и др., 2002; Тюренков И.Н. и др., 2011). В настоящее время много исследований направлено на изучение фармакологических свойств производных глутаминовой кислоты (Тюренков И.Н. и др., 2010; Багметова В.В. и др., 2013; Вислобоков А.И. и др., 2013; Макарова Л.М. и др., 2014).

Обнаружено, что глутаминовая кислота и ее производные проявляют различную активность в зависимости от их пространственного строения (Берестовицкая В.М. и др., 2004).

В литературе достаточно широко изучается физиологическое действие метил-, фенил- и п-хлорфенилглутаминовых кислот (Мандельштам Ю.Е. и др., 1991; Ikonomidou H., 1998).

Установлено, что производное глутаминовой кислоты гидрохлорид β-фенилглутаминовой кислоты обладает психотропным действием, проявляет выраженную анксиолитическую и антидепрессивную активность (Чернышева Ю.В. и др., 2012; Багметова В.В. и др., 2013; Туштепкоv І.N. et al., 2013), является малотоксичным и не вызывает развития толерантности и синдрома отмены (Бугаева Л.И. и др., 2012).

В эксперименте и клинике установлено, что глутамат способствует сохранению сократительных свойств миокарда на достаточно высоком уровне в

послеоперационном периоде при кардиохирургических операциях (Шмерельсон М.Б. и др., 1990), снижает степень миокардиальной контрактуры и защищает сердце от реперфузионных повреждений. Обнаружено, что в условиях окклюзии передней межжелудочковой ветви левой коронарной артерии глутамат повышает коллатеральный коронарный кровоток и увеличивает ретроградное давление (Сапожков А.В., 1984), а также обладает антигипоксическими и антиоксидантными свойствами (Удинцев Н.А. и др., 1984). Известно, что глутаминовая кислота активно потребляется мышцами сердца, оказывая лечебное или профилактическое воздействие при происходящих в нем дистрофических процессах (Pietersen H.G. et al., 1998; Venturini A. et al., 2009). Данная аминокислота может рассматриваться как потенциальный энергетический субстрат, являясь предшественником α-кетоглутарата-интермедиата трикарбоновых кислот. Кроме того, установлено, что в организме глутамат превращается в ГАМК-медиатор стресс-лимитирующей системы, способной ограничивать развитие стресс-реакции и ее повреждающих эффектов (Меерсон Ф.З. и др., 1989; Пшенникова М.Г., 2000).

Экспериментальные данные показывают, что N-ацетил-L-глутаминовая кислота обладает кардиопротекторным и противоаритмическим действием при ишемическом повреждении сердца животных (Филатова Н.М. и др., 2009; 2012; Блинов Д.С. и др., 2012; Гогина Е.Д. и др., 2012). Данное соединение ограничивает активацию процессов перекисного окисления липидов в очаге ишемического повреждения сердца у крыс и снижает концентрацию адреналина (Якушкин С.Н. и др., 2009; Филатова Н.М. и др., 2010; Блинова Е.В. и др., 2011). Авторами была установлена противоишемическая активность исследуемого соединения, проявляющаяся в ограничении размеров 30НЫ некроза при экспериментальном инфаркте миокарда у крыс. Было показано, что введение N-ацетил-L-глутаминовой кислоты сопровождается раствора снижением летальности увеличением продолжительности мышей жизни при катехоламиновой интоксикации (Блинов Д.С. и др., 2012).

Имеются данные о том, что замещение анионного фрагмента в молекуле диалкиламинофенилацетамида гидрохлорида на остаток глутаминовой кислоты приводит к повышению антиаритмических свойств в условиях неишемического генеза (Блинов Д.С. и др., 2003). Выраженное противоаритмическое и противофибрилляторное действие было обнаружено у соединения амид N-сукцинил-L-глутамил-L-лизин, содержащее в своем составе глутаминовую кислоту. В исследованиях была выявлена способность данного вещества снижать реактивность β-адренорецепторов миокарда и предотвращать внезапную коронарную смерть (Крыжановский С.А. и др., 2013).

Некоторые авторы на изоволюмических сердцах крыс изучали эффект глутаминовой кислоты на функции сердечной мышцы и источники формирования анаэробной АТФ в миокарде, подверженном гипоксии. В результате был выявлен положительный эффект глутаминовой кислоты, который авторы связывают с активацией формирования анаэробной АТФ в митохондриях (Pisarenko O.I. et al., 1985).

Wise S. с соавторами (1992) при изучении влияния глутаминовой кислоты на реперфузионное повреждение миокарда на изолированных сердцах крыс обнаружили уменьшение времени фибрилляции желудочков и набухания кардиомиоцитов, улучшение восстановления сократительной способности миокарда во время реперфузии.

Шмерельсон М.Б. с соавторами (1990) установили, что введение глутаминовой кислоты в дозе 20 мг/кг при протезировании искусственных клапанов в условиях использования аппарата искусственного кровообращения способствует увеличению сократительной функции миокарда в доишемическом периоде, в период ишемии - сохранению высокого содержания АТФ и креатинфосфата в миокраде, благоприятному восстановлению сердечного ритма в постишемическом периоде. В послеоперационном периоде отмечено снижение частоты острой сердечной недостаточности и развития нарушения ритма, восстановление синусового ритма при исходной мерцательной аритмии.

В доклинических исследованиях композиции Элтацин, содержащей в своем составе три заменимых аминокислоты: глицин, глутаминовую кислоту и цистин, были выявлены кардиопротективные, антиоксидантные и цитопротекторные свойства (Заславская Р.М. и др., 1999; Калинина Е.В. и др., 2003, 2007). Максимова Л.Н. с соавт. (2013) изучали влияние препарата Элтацин на динамику клинического статуса, функционального класса сердечной недостаточности, а также сократительную способность миокарда у больных хронической сердечной недостаточностью. В результате исследования было выявлено повышение сократительной способности миокарда в группе пациентов, принимавших Элтацин. Было отмечено нормализующее влияние препарата на диастолическую дисфункцию, а также значимое уменьшение количества эпизодов депрессии и элевации сегмента ST. сокращение количества суправентрикулярных экстрасистол. Через 21 день от начала приема препарата было отмечено уменьшение количества активных форм кислорода и значимое повышение показателей антиоксидантного статуса, что свидетельствует об активации антиоксидантной защиты организма.

При изучении защитных свойств глутамата и аспартата на модели ишемической реперфузии миокарда экспериментальные данные показали, что добавление аминокислот до и во время поперечного зажима аорты значительно снижает ишемическое повреждение (Tominaga R. et al., 1985).

В совокупности, все перечисленное дает основание предполагать наличие кардиопротекторных свойств у производных глутаминовой кислоты. Рассмотренные примеры указывают на то, что поиск и создание новых лекарственных препаратов среди производных глутаминовой кислоты является перспективным направлением исследований.

ГЛАВА 2. МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

Исследование выполнено на 433 нелинейных крысах и 68 белых мышах.

Животные были получены из питомника «Столбовая» РАМН, Московская обл. и ФГПУ «Рапполово» РАМН (Ленинградская область). Все животные содержались в стандартных условиях вивария с соблюдением всех правил лабораторной практики при проведении доклинических исследований в РФ (ГОСТ З 51000.3-96 и 1000.4-96), а также приказа МЗ РФ №267 от 19.06.2003г. утверждении правил лабораторной практики», В соответствии рекомендациями ВОЗ по экспериментальной работе с использованием животных (Zutphen L.F. et al., 1993). Проведение экспериментов осуществлялось в соответствии с требованиями Российского национального комитета по биоэтике при Российской академии наук и международным рекомендациям Европейской конвенции ПО зашите позвоночных животных, используемых при исследованиях (1997). экспериментальных Исследование было одобрено ΓУ Волгоградского региональным независимым этическим комитетом медицинского научного центра (протокол № 12-2011).

В работе изучено 9 новых соединений - производных глутаминовой кислоты, синтезированных на кафедре органической химии Российского государственного педагогического университета им. А.И.Герцена (г. Санкт-Петербург, Россия)². Были исследованы производные глутаминовой кислоты и их композиции с органическими кислотами (Таблица 1).

² Выражаем искреннюю благодарность зав. кафедрой органической химии РГПУ им.А.И..Герцена, д.х.н., проф. Берестовицкой В.М., к.х.н., доц. Васильевой О.С. и всем сотрудникам кафедры за предоставленные для исследования вещества

Таблица 1. Химическая структура, молекулярная масса и доза исследуемых веществ.

№ п/п	Шифр соединения	Формулы и названия химических веществ	Молеку- лярная масса	Доза, мг/кг
1	РГПУ-135	HOOC COOH	258,5	26,0
2	РГПУ-238	Гидрохлорид 3-фенилглутаминовой кислоты н ₃ соос Диметиловый эфир гидрохлорида 3-фенилглутаминовой кислоты	287,0	28,7
3	РГПУ-239	Диэтиловый эфир гидрохлорида 3-фенилглутаминовой кислоты	315,5	31,5
4	РГПУ-240	н ₃ соос соосн ₃ соосн ₃ Диметиловый эфир гидрохлорида	322,0	32,2
5	РГПУ-241	3-(4-хлорфенил)-глутаминовой кислоты ———————————————————————————————————	288,5	28,8

Продолжение таблицы 1.

№ п/п	Шифр соединения	Формулы и названия химических веществ	Молеку- лярная масса	Доза, мг/кг
6	РГПУ-222	ноос соон ноос соон ноос соон Композиция 3-фенилглутаминовой и лимонной	415,0	41,5
7	РГПУ-223	КИСЛОТ 1:1 NH2 HOOC + HOOC COOH	341,0	34,1
		Композиция 3-фенилглутаминовой и янтарной кислот 1:1		
8	РГПУ-233	NH ₂ HOOC OOH HOOC COOH	369,0	36,9
		Композиция 3-фенилглутаминовой и яблочной кислот 1:1		
9	РГПУ-234	ноос соон соон он Композиция 3-фенилглутаминовой и	361,0	36,1
		салициловой кислот 1:1		

Для скрининга веществ с кардиопротекторным действием все изучаемые соединения вводились внутрибрюшинно (в/бр) в дозах 1/10 от молекулярной массы за 10 минут до и через 10 минут после стрессирования. В качестве препарата сравнения использовали фенибут 25 мг/кг, т.е. в наиболее эффективной дозе согласно проведенным ранее исследованиям (Перфилова В.Н. и др., 2006;

Самотруева М.А. и др., 2008; Молодавкин Г.М. и др., 2009) (синтезирован на кафедре органической химии Российского государственного педагогического университета им. А.И.Герцена, г. Санкт-Петербург, Россия).

Определение ЛД₅₀ соединения РГПУ-238 проводилось на мышах-самцах (m=27±3,0 г) в широком диапазоне доз: 500 мг/кг, 1000 мг/кг, 1500 мг/кг, 1750 мг/кг, 2000 мг/кг. Для каждой из испытуемых доз использовали 10 мышей. Соединение РГПУ-238 вводилось однократно внутрибрюшинно. Контроль за состоянием животных проводили визуально (по состоянию покровов, активности и т.д.). ЛД₅₀ рассчитывали по методу Литчфилда и Уилкоксона в изложении М.Л.Беленького (Беленький М.Л., 1963). Терапевтический индекс (ТИ) рассчитывали по формуле ЛД₅₀/ЕД₅₀. Класс токсичности определяли по Н.Ф. Измерову (1977).

Для блокады NO-синтаз использовался неселективный N-нитро-L-аргинин метиловый эфир (L-NAME, Sigma, США) в дозе 10 мг/кг (в/бр). Активность нейрональной NO-синтазы ингибировалась селективным блокатором - 7-нитроиндазол (Sigma, США) - 50 мг/кг (в/бр), индуцибельной – аминогуанидином (Sigma, США) - 50 мг/кг (в/бр). В качестве блокатора ГАМК_А-рецепторов применялся бикукулин (Sigma, США) в дозе 2 мг/кг (в/бр). Блокаторы вводились за 10 минут до и через 10 минут после стрессирования.

Для оценки эндотелиальной дисфункции использовали ацетилхолин - 0,01 мг/кг (Acros organics, США), нитро-L-аргинин - 10 мг/кг (Acros organics, США), нитроглицерин - 0,007 мг/кг (МТХ, Москва).

Моделирование острого стрессорного воздействия.

Исследование выполнено на 243 крысах-самках, находящихся в стадии диэструса, и 78 крысах-самцах.

В экспериментах использовали иммобилизационно-болевую методику стрессирования крыс, заключающуюся в подвешивании животных за холку зажимом Кохера на 24 часа (Ковалев Г.В. и др., 1983). Исследуемые соединения и препарат сравнения вводили внутрибрюшинно за 10 мин до и через 10 минут после стрессирования.

Скрининг исследуемых веществ проводился на 78 крысах-самках 4 месячного возраста массой 234±4,4 г. Были сформированы следующие группы животных: 1) интактная, n=6; 2) контрольная стресс+физ. p-p, n=8; 3) стресс+РГПУ-135, n=8; 4) стресс+РГПУ-222, n=6; 5) стресс+РГПУ-223, n=6; 6) стресс+РГПУ-233, n=6; 7) стресс+РГПУ-234, n=6; 8) стресс+РГПУ-238, n=8; 9) стресс+РГПУ-239, n=6; 10) стресс+РГПУ-240, n=6; 11) стресс+РГПУ-241, n=6; 12) стресс+фенибут, n=6.

Изучение зависимости доза-эффект проводилось на 30 крысах-самках в возрасте 4 месяца, массой $241\pm11,3$ г. Животные были поделены на группы: 1) интактная, n=6; 2) стресс+физ.p-p, n=6; 3) стресс+РГПУ-238 в дозе 14,5 мг/кг, n=6; 4) стресс+РГПУ-238 - 28,7 мг/кг, n=6; 5) стресс+РГПУ-238 - 57,4 мг/кг, n=6.

Исследование влияния соединения РГПУ-238 на функциональные резервы сердца в условиях блокады ГАМК_А-рецепторов и NO-синтаз осуществляли на 135 крысах-самках массой $241\pm4,6$ г. Для этого были сформированы группы животных (в связи с высокой гибелью во время эксперимента количество животных набиралось до 6 выживших): 1) интактная, n=14; 2) стресс+физ. p-p, n=18; 3) стресс+аминогуанидин, n=6; 4) стресс+7-нитроиндазол, n=6; 5) стресс+L-NAME, n=31; 6) стресс+бикукулин, n=6; 7) стресс+РГПУ-238+аминогуанидин, n=6; 8) стресс+РГПУ-238+7-нитроиндазол, n=6; 9) стресс+РГПУ-238+L-NAME, n=6; 10) стресс+Фенибут+7-нитроиндазол, n=6; 11) стресс+фенибут+аминогуанидин, n=6; 12) стресс+фенибут+7-нитроиндазол, n=6; 13) стресс+фенибут+L-NAME, n=12; 14) стресс+фенибут+бикукулин, n=6.

Оценка влияния исследуемого соединения на ино- и хронотропные резервы сердца у животных разных возрастных групп проводилась на 78 крысах-самках предаварительно рандомизированных по возрасту и массе (6 месяцев, m=265±19,0 г; 12 месяцев, m=328±13,7 г; 24 месяца, m=355±15,6 г). Были сформированы следующие группы животных: 3 интактных в возрасте 6 (n=6), 12 (n=6), 24 (n=6) месяцев; 3 контрольных (стресс+физ. p-p) - 6 (n=8), 12 (n=6), 24 (n=7) месяцев; 3 группы стрессированных животных, получавших РГПУ-238 в дозе 28,7 мг/кг в/бр

— 6 (n=6), 12 (n=7), 24 (n=7) месяцев; 3 группы стрессированных крыс, которым вводили фенибут в дозе 25 мг/кг в/бр - 6 (n=7), 12 (n=6), 24 (n=6) месяцев.

Моделирование хронического стрессорного воздействия.

Эксперимент выполнен на 80 интактных крысах-самцах, предварительно рандомизированных по возрасту и массе (12 месяцев, m=379 \pm 2,6 г; 24 месяца, m=410 \pm 6,5 г).

Были сформированы следующие группы животных: 2 интактные в возрасте 12 (n=10) и 24 (n=10) месяцев; 2 контрольные (стресс+физ. p-p) - 12 (n=10), 24 (n=10) месяцев; 2 группы стрессированных животных, которым вводили соединение РГПУ-238 в дозе 28,7 мг/кг — 12 (n=10), 24 (n=10) месяцев; 2 группы стрессированных крыс, получавших фенибут в дозе 25 мг/кг - 12 (n=10), 24 (n=10) месяцев.

Животные подвергались стрессированию в течение 7 дней (ежедневно по 30 минут) в специальной установке (6 изолированных отсеков одинакового объема) со сменой разномодальных стрессорных раздражителей (пульсирующий свет, громкий звук и вибрация) каждые 5 минут по стахостической схеме, таким образом, что каждое последующее стрессирующее воздействие было непредсказуемым для животных (Тюренков И.Н. И др., 2013). Исследуемое соединение и препарат сравнения фенибут вводились перорально 1 раз в день за 30 мин до стрессирования в течение недели.

Изучение кардиопротекторного действия исследуемых веществ при остром хроническом стрессорном воздействии осуществлялось использованием нагрузочных проб нагрузки объемом (быстрое внутривенное введение животным физиологического раствора из расчета 0,3 мл/на 100 г массы); пробы на адренореактивность (внутривенное введение адреналина в разведении 10^{-7} г/мл ИЗ расчета 0,1мл/100 г массы животного); максимальной изометрической нагрузки (пережатие восходящей части дуги аорты в течение 30 с) (Тюренков И.Н. и др., 1981; Спасов А.А. и др., 2006; Перфилова В.Н., 2009).

Перед проведением нагрузочных проб животных наркотизировали (хлоралгидрат 400 мг/кг в/бр) и после перевода на искусственную вентиляцию

четвертом межреберье легких осуществляли торакотомию, В затем перикардотомию. Через верхушку сердца в полость левого желудочка вводился катетер и посредством компьютерного гемодинамического анализатора на базе BEAT (Москва, Россия) программы регистрировали показатели кардиогемодинамики: скорость сокращения (+dP/dt max) (мм.рт.ст/сек), скорость расслабления (-dP/dt max) (мм.рт.ст/сек) миокарда, левожелудочковое давление (ЛЖД, мм рт. ст.), частоту сердечных сокращений (ЧСС, уд/мин). Показатель максимальной интенсивности функционирования структур миокарда (МИФС) формуле: (ЛЖДср.хЧССср)/масса рассчитывался ПО левого желудочка+1/3межжелудочковой перегородки (Тюренков И.Н. и др., 2012).

Изучение эндотелиопротекторного действия проводили у крыс, подвергшихся хроническому стрессированию, по изменению кровотока в проекции среднемозговой артерии при модификации синтеза эндогенного NO внутривенным введением анализаторов – ацетилхолина (АЦХ) (0,01 мг/кг, Acros organics, США); нитроглицерина (0,007 мг/кг, МТХ, Москва) и нитро-L-аргинина - блокатора синтеза NO (10 мг/кг, Acros organics, США) с использованием метода высокочастотной ультразвуковой допплерографии («Минимакс-Допплер-К», г. Санкт-Петербург) (Тюренков И.Н. и др., 2007).

Изучение антиагрегантной активности проводилось на двухканальном лазерном анализаторе агрегации тромбоцитов НПФ «Биола» (модель 220 LA) (г. Москва, Россия) по методу Born G. в модификации Габбасова 3.А. и соавт. (1989). В основе метода лежит степень изменения светопропускания обогащенной тромбоцитами плазмы после введения в нее тромбоцитагрегирующего агента. В исследовании использовалась богатая тромбоцитами плазма. Для этого кровь стабилизировали 3,8% раствором 5,5-водного цитрата натрия в соотношении 9:1 и центрифугировали 10 минут при 1000 об/мин на центрифуге Elmi CM-6M получали (Латвия). Бедную тромбоцитами плазму повторным центрифугированием при 1000 об/мин в течение 15 минут. В кювету агрегометра вносили 0,3 мл плазмы и инкубировали в течение 3 минут при температуре 37° С. Затем добавляли индуктор агрегации – динатриевую соль аденозин-5дифосфорной кислоты (АДФ) (фирмы НПО РЕНАМ, Россия) в конечной концентрации 5 мкМ. В результате получали кривые, отражающие падение оптической плотности обогащенной тромбоцитами плазмы. Уровень и скорость агрегации оценивали по величине максимальной амплитуды и наклону агрегатограммы.

Изучение показателей системы гемостаза определяли на программируемом оптико-механическом коагулометре - Минилаб 701 (Россия) с использованием наборов для определения протромбинового времени, тромбинтеста, фибриноген-теста, активированного частичного тромбопластинового времени (производство НПО РЕНАМ, Россия) (Габбасов З.А. и др., 1989). Забор крови проводился из брюшного отдела аорты. Кровь стабилизировали 3,8% раствором цитрата натрия в соотношении 9:1.

Изучение мембранопротекторных свойств соединений проводилось с использованием моделей кислотного и осмотического гемолиза.

Для оценки кислотной резистентности эритроцитов использовалась методика Терского И.А. и Гительзона И.И. (1961). В основе ее лежит фотометрическая регистрация снижения оптической плотности эритроцитов вследствие их гемолиза. Трижды отмытые в 0,9% растворе NaCl эритроциты ресуспендировали в 5мл этого же раствора в количестве 0,01 мл. Индуцировали гемолиз добавлением 0,01 N раствора соляной кислоты. Ход определения: в кювету вносили 290 мкл суспензии эритроцитов и магнитную мешалку при скорости вращения 800 об/мин. Кювету помещали в термостатируемую ячейку и на 10 секунде после включения записи добавляли 10 мкл 0,01N раствора соляной кислоты. Кислотную резистентность эритроцитов оценивали по времени достижения половины величины максимальной амплитуды эритрограммы (Т_{1/2} гемолиза) (Терской И.А. и др., 1961). Эксперименты проводились на лазерном анализаторе агрегации «Биола».

Осмотическую резистентность эритроцитов определяли по концентрации экстрацеллюлярного гемоглобина согласно методике Katoh M. (2001). Для этого в одну пробирку добавляли 4,95 мл 0,45% раствора NaCl, в

другую — 4,95 мл 0,55% раствора NaCl, и в третью - 4,95 мл дистиллированной воды. После этого во все пробирки вносили 50 мкл эритроцитов и оставляли инкубировать 60 минут при температуре 37°C. После этого растворы центрифугировали 10 мин при 1000 об/минуту на центрифуге Elmi CM-6М (Латвия). Затем на спектрофотометре ПЭ-5400В Экрос (Россия) измеряли величину светопоглощения надосадочной жидкости при длине волны 540 нм, в сравнении с аналогичными образцами проб эритроцитов, ресуспендированных в дистиллированной воде. Процент гемолиза рассчитывался как отношение экстинкции опытной пробы (0,45% раствора натрия хлорида) к экстинкции водного гемолизата.

Изучение противогипоксических свойств соединений проводилось на 18 мышах-самцах массой 29±2 г. на модели нормобарической гипоксии с гиперкапнией. Для этого животных помещали по одному в герметически закрываемые контейнеры объемом 200 см³ и регистрировали время до наступления апноэ (Торкунов П.А. и др., 2000; Воронина Т.А. и др., 2000; Хабриев Р.У., 2005).

Выраженность процессов перекисного окисления липидов (ПОЛ) изучали на 32 крысах-самках массой 200-250, находящихся в стадии диэструса. Животных подвергали 24-х часовому иммобилизационно-болевому стрессированию путем подвешивания крысы за дорсальную кожную шейную складку на 24 часа (Ковалев Г.В. и др., 1983).

Было сформировано 4 группы по 8 животных в каждой: 1 - группа позитивного контроля (интактные крысы); 2 - группа негативного контроля - стрессированные самки, получавшие 0,9%-ный раствор хлорида натрия в аналогичном с опытными группами режиме; 3 и 4 - опытные группы, в которых животным соответственно вводили внутрибрюшинно до подвешивания соединение РГПУ-238 (в дозе 28,7 мг/кг) и препарат сравнения фенибут (в дозе 50 мг/кг).

После стрессирования животных декапитировали, извлекали сердце, промывали ледяным физиологическим раствором и гомогенизировали в

теклянном гомогенизаторе Поттера. Полученный гомогенат центрифугировали 10 мин (с охлаждением) при 600 G для осаждения дебриса и неразрушенных клеток. Надосадочную жидкость вновь центрифугировали 20 мин на максимальной скорости (8 000 G). Полученный осадок ресуспендировали и использовали в качестве митохондриальной фракции (Lanza I.R. et al., 2009), в которой определяли продукты перекисного окисления липидов и активность антиоксидантных ферментов. Концентрацию белка определяли с использованием коммерческого набора «Рierce™ BCA Protein Assay Kit» (Thermo Scientific, США).

Интенсивность ПОЛ исследовали по содержанию диеновых коньюгатов (ДК), дикетонов и малонового диальдегида (МДА).

Определение концентрации диеновых коньюгатов и дикетонов проводили по методу Ушкаловой В.Н. и соавт. (1993). 250 мкл исследуемой пробы экстрагировали 5 мл смеси гептан-изопропанола в соотношении 1:1 в течение 1 минуты. Затем центрифугировали 10 минут при 2000 об/мин. Фракции разделяли добавлением 500 мкл дистиллированной воды, отстаивали в течение 5 минут. Гептановую фазу спектрофотометрировали в кварцевых кюветах на спектрофотометре Неλіов (Великобритания) при длине волны поглощения 233 нм (диеновые коньюгаты) и 278 нм (дикетоны).

МДА определяли по методу И.Д. Стальной (1977). Для этого брали 600 мкл 1,3% ортофосфорной кислоты и 40 мкл сульфата железа (II), добавляли 200 мкл пробы, перемешивали и вносили 200 мкл 0,7% р-ра тиобарбитуровой кислоты (ТБК). Затем выдерживали на кипящей водяной бане 30 минут и центрифугировали в течение 10 минут при 8000 об/мин. После этого отбирали верхнюю фазу и спектрофотометрировали против контроля (без пробы) при длине волны 532 нм на спектрофотометре Неλіоѕ (Великобритания).

Антиоксидантный статус оценивали измерением на спектрофотометре Неλіоѕ (Великобритания) активности ферментов супероксиддисмутазы (СОД), каталазы и глутатионпероксидазы (ГП).

Определение активности супероксиддисмутазы проводили по методу В.А. Костюка (1990), который основан на реакции окисления кверцетина. К 4,4 мл

0,015 М фосфатного буфера рН 7,8, содержащего 0,08 мМ этилендиаминтетраацетата и 0,8 мМ тетраметилэтилендиамина, вносили 0,5 мл плазмы крови, в холостую и контрольную пробы добавляли 0,5 мл 0,9% NaCl. Реакцию запускали 0,1 мл раствора кверцетина в диметилсульфоксиде (ДМСО) (1 мг на 5 мл), в холостую пробу вносили 0,1 мл ДМСО.

Измеряли оптическую плотность проб на 0 и 20 минуте при длине волны λ=406 нм против холостой пробы в кювете с длинной оптического пути 1 см. Расчет процента ингибирования проводили по формуле:

$$I = 100 - \frac{Don_0 - Don_{20}}{D \text{ кон }_0 - D\text{кон}_{20}} \times 100$$

где I – процент ингибирования; Doп и Dкон – оптические плотности опытной и контрольной проб.

Активность каталазы изучали с использованием метода, основанного на способности пероксида водорода образовывать стойкий окрашенный комплекс с солями аммония (Королюк М.А. и др., 1988). Ход определения: 20 мкл плазмы добавляли к 2 мл 0,03% раствора H_2O_2 , который получали разведением 0,1 мл 40,59% H_2O_2 в 100 мл Na-P-буфера, рН 6,8. В холостую пробу вносили 0,1 мл дистиллированной воды. Реакцию останавливали добавлением 1 мл 4% раствора молибдата аммония после 20 минут инкубации при 37оС, центрифугировали 20 минут при 8000 об/мин. Экстинкцию определяли при длине волны 410 нм против контроля на спектрофотометре $He\lambda$ ios (Великобритания). За единицу активности каталазы принимали то количество фермента, которое участвовало в превращении 1мккат H_2O_2 за 1 сек при заданных условиях.

Расчёт производили по формуле (Зайцев В.Г. и др., 2002):

$$y = 4.7052x^2 + 0.9456x + 0.1876$$

Активность = 13.64 - 1.55у

$$x = \Delta E$$
 (контр – опыт)

Активность глутатиона в реакции с 5,5'-дитио-бис-(2-нитробензойной кислотой) (ДТНБК). В две пробирки вносили 50 мкл биологического материала,

предварительно осаждали белок в контрольной пробе добавлением 100 мкл 20%-ной трихлоруксусной кислоты (ТХУК). Затем добавляли 2,5 мл буферного раствора (0,1 H трис-HCl, pH 8,5; содержавшего 6 мМ ЭДТА; 12 мМ азида натрия – 0,78 г NaN3 / л; 4,8 мМ GSH – 1.5 г/л) и 50 мкл свеже-приготовленного 20 мМ раствора ГПТБ – 1,8 г/л в физиологическом растворе. После 5 минут инкубации при комнатной температуре добавляли 100 мкл 20%-ного раствора ТХУК в опытную пробу, центрифугировали 10 минут при 3000 об/мин, 50 мкл реактива Эллмана (10 мМ раствора ДТНБК (4 г/л) в этаноле) вносили в 2,45 мл надосадочной жидкости. Фотометрировали через 5 минут при длине волны 412 нм на спектрофотометре Неλіоѕ (Великобритания).

Активность фермента определяли по разности концентраций GSH в опытной и контрольной пробах, расчёт активности проводили в моль GSH на 1 г ткани за 1 мин.

Методы статистической обработки

Статистическая обработка данных осуществлялась с использованием пакета прикладных программ «Statistika 10». В работе использовались параметрические и непараметрические методы, с учетом предварительной проверки выборок на нормальность распределения по критерию Шапиро-Уилка. Для выявления различий между выборками применяли t-критерий Стьюдента для парных сравнений и с поправкой Бонферрони — для множественных, критерии Краскела-Уоллиса с пост-хок тестом Данна, Манна—Уитни для множественных сравнений. Статистически достоверными различия считали при значимости p<0,05.

ГЛАВА 3. ПОИСК ВЕЩЕСТВ С КАРДИОПРОТЕКТОРНЫМ ДЕЙСТВИЕМ СРЕДИ ПРОИЗВОДНЫХ ГЛУТАМИНОВОЙ КИСЛОТЫ

3.1 Изучение влияния производных глутаминовой кислоты на функциональные резервы сердца стрессированных животных

Известно, что тяжелое стрессорное воздействие приводит к депрессии сократительной функции миокарда, которая проявляется снижением скоростей сокращения и расслабления, ударного и минутного объемов и уменьшением функциональных резервов сердца. В этой связи, является актуальным поиск веществ, ограничивающих повреждающее действие стресса на сократительную функцию миокарда. В качестве потенциальных кардиопротекторных веществ можно рассматривать производные глутаминовой кислоты.

Скрининг веществ проводили на 72 крысах-самках, находящихся во время стрессирования в стадии диэструса. Животных подвергали 24 часовому иммобилизационно-болевому стрессированию, после которого проводили нагрузочные тесты: пробу на адренореактивность и максимальную изометрическую нагрузку.

Исследуемые соединения вводили внутрибрюшинно за 10 минут до и через 10 минут после стрессирования. По результатам прироста скорости сокращения и расслабления миокарда, ЛЖД, ЧСС и МИФС в ответ на нагрузочные пробы (проба на адренореактивность и максимальная изометрическая нагрузка) оценивали влияние веществ на функциональные резервы стрессированного миокарда.

Установлено, что на 20 секунде проведения пробы на адренореактивность прирост скорости сокращения (+dP/dt max), расслабления миокарда (-dP/dt max), ЛЖД и ЧСС у группы интактных животных составил 52,7; 43,7; 52,8 и 28,6% соответственно по сравнению с исходными значениями. В условиях максимальной изометрической нагрузки у интактных животных через 5 сек после

окклюзии восходящей части дуги аорты прирост показателей +dP/dt max, -dP/dt max, ЛЖД и МИФС составил 61,3; 53,9; 70,1 и 122,6%, на 30 секунде - 44,7; 36,7; 51,0 и 86,1% соответственно относительно исходных данных (Таблица 2).

У животных, подвергшихся острому стрессорному воздействию, прирост показателей сократимости миокарда (+dP/dt max и -dP/dt max), ЛЖД и ЧСС на 20 с нагрузки адреналином был равен 26,6 (p<0,05); 22,2 (p<0,05); 26,7 (p<0,05) и 19,9% соответственно по отношению к исходу, что было существенно ниже значений интактной группы. При проведении максимальной изометрической нагрузки прирост скорости сокращения и расслабления миокарда, ЛЖД и МИФС на 5 секунде окклюзии восходящей части дуги аорты составил 37,2; 42,3; 37,2 (p<0,05) и 63,2 (p<0,05)% соответственно по сравнению с исходными значениями, что также было ниже прироста группы интактных животных. Через 30 сек работы сердца в изометрическом режиме у стрессированных животных прирост +dP/dt max, -dP/dt max, ЛЖД и МИФС составил 16,7; 15,8 (p<0,05); 17,2 (p<0,05) и 7,4 (p<0,05)% соответственно по сравнению с исходными данными, что было ниже значений интактной группы и свидетельствует о выраженном, статистически значимом снижении ино- и хронотропных резервов сердца в условиях стрессорного воздействия (Таблица 2).

Таблица 2. Влияние исследуемых соединений и препарата сравнения фенибута на прирост скорости сокращения (+dP/dt max), скорости расслабления миокарда (-dP/dt max), левожелудочкового давления (ЛЖД), частоты сердечных сокращений (ЧСС) и максимальной интенсивности функционирования структур (МИФС) у стрессированных животных при проведении нагрузочных проб (М±m).

Группы		Проба на адренореакт	ивность, прирост показателей	й в %
хинтовиж	+dP/dt max	-dP/dt max	лжд	ЧСС
Интактная	52,7±4,4	43,7±9,4	52,8±5,4	28,6±8,1
Стресс+физ.р-р (контрольная)	26,6±6,6*	22,2±7,5*	26,7±6,7*	19,9±8,0
Стресс+фенибут	45,8±2,6 [#]	49,9±3,2 [#]	52,0±4,0 [#]	30,0±7,8
Стресс+РГПУ-135	43,2±3,5 [#]	54,4±4,0 [#]	46,0±9,7 [#]	22,1±3,4
Стресс+РГПУ-238	54,3±4,5 [#]	64,2±8,4 [#]	70,1±9,2 [#]	39,7±4,8#
Стресс+РГПУ-239	36,4±8,3	49,0±6,2 [#]	49,0±9,2 [#]	38,3±6,9 [#]
Стресс+РГПУ-240	38,6±7,9 [#]	38,6±8,0	40,2±7,6 [#]	30,6±2,8
Стресс+РГПУ-241	55,6±7,5 [#]	47,2±4,7 [#]	49,6±8,0#	26,9±7,3
Стресс+РГПУ-222	54,2±4,7 [#]	42,3±8,3	42,3±6,4 [#]	8,7±2,7
Стресс+РГПУ-223	34,6±6,8	43,8±8,6 [#]	32,9±7,3	19,8±6,9
Стресс+РГПУ-233	19,2±5,4	20,3±5,9	20,3±6,2	5,5±3,2
Стресс+РГПУ-234	41,6±3,1	31,5±5,8	39,2±4,4 [#]	17,6±5,8

Продолжение таблицы 2.

Максимальная изометрическая нагрузка, прирост показателей в % Группы +dP/dt max -dP/dt max ЛЖД								
- P)								ИФС
животных	5 c	30 c	5 c	30 c	5 c	30 c	5 c	30 c
Интактная	61,3±5,2	44,7±5,5	53,9±9,1	36,7±5,9	70,1±4,1	51,0±5,8	122,6±10,8	86,1±13,1
Стресс+физ.р-р (контрольная)	37,2±8,3	16,7±8,5	42,3±6,3	15,8±9,1*	37,2±8,4*	17,2±8,7*	63,2±12,2*	7,4±9,7*
Стресс+фенибут	50,8±2,6 [#]	39,6±2,1#	50,3±3,0 [#]	37,6±4,8 [#]	93,0±7,9 [#]	82,9±9,2 [#]	143,0±7,2#	124,1±10,3#
Стресс+РГПУ-135	70,3±7,5	49,2±4,8 [#]	71,7±3,5	48,3±6,1	82,6±6,1 [#]	57,4±7,8 [#]	114,0±18,6	71,3±18,2 [#]
Стресс+РГПУ-238	63,2±8,2 [#]	39,6±4,6 [#]	60,8±6,5 [#]	33,9±5,0 [#]	111,7±7,1 [#]	92,9±6,4 [#]	208,5±25,6 [#]	154,8±22,3 [#]
Стресс+РГПУ-239	50,9±7,4 [#]	30,2±7,9	62,3±8,9	38,1±4,6	62,9±7,2 [#]	49,2±8,7 [#]	114,2±16,5 [#]	78,7±16,2 [#]
Стресс+РГПУ-240	42,8±5,9	17,9±3,9	48,0±4,2	17,5±5,2	57,3±5,6 [#]	17,4±9,0	105,3±10,1 [#]	43,7±11,4
Стресс+РГПУ-241	45,1±3,9 [#]	27,9±2,9	54,7±7,8	27,0±8,7	73,2±8,0 [#]	51,3±10,9	102,8±13,7 [#]	61,4±10,9 [#]
Стресс+РГПУ-222	23,5±0,8	8,2±0,1	20,5±1,1	5,1±2,1	24,0±0,9	8,2±0,2	32,9±0,8	12,0±0,6
Стресс+РГПУ-223	60,8±10,4	51,3±8,8 [#]	57,3±9,1	46,6±9,7 [#]	48,7±8,6	40,2±8,3	93,2±22,1	76,8±23,1
Стресс+РГПУ-233	23,6±2,0	14,8±1,6	18,3±1,7	4,9±2,8	26,1±2,6	16,9±2,4	52,7±5,0	34,7±3,3 [#]
Стресс+РГПУ-234	42,2±5,5	32,2±5,5	39,7±4,6	24,3±3,9	40,3±5,7	30,1±5,9	76,8±5,1 [#]	55,1±4,9 [#]

Примечание:

^{* -} изменения достоверны относительно интактной группы при p<0,05 с использованием U-критерия Манна–Уитни;

^{# -} изменения достоверны относительно контрольной группы стрессированных животных при p<0,05 с использованием U-критерия Манна— Уитни.

У стрессированных животных, получавших препарат сравнения – фенибут, прирост скоростей сокращения и расслабления миокарда, ЛЖД в ответ на нагрузку адреналином равнялся 45,8 (р<0,05); 49,9 (р<0,05) и 52,0 (р<0,05)% относительно исходных значений, что было достоверно выше показателей стрессированных животных контрольной группы, прирост ЧСС - 30,0%. При окклюзии восходящей части дуги аорты прирост +dP/dt max, -dP/dt max, ЛЖД и МИФС на 5 секунде был равен 50,8 (р<0,05); 50,3 (р<0,05); 93,0 (р<0,05) и 143,0 (р<0,05)% по сравнению с исходными значениями, что достоверно превышало значения контрольной группы стрессированных животных. Через 30 секунд работы сердца в изометрическом режиме прирост показателей сократимости миокарда, ЛЖД и МИФС относительно исхода составил 39,6 (р<0,05); 37,6 (р<0,05); 82,9 (р<0,05) и 124,1 (р<0,05)%, что также оставалось выше таковых значений группы контроля (Таблица 2).

При скрининге веществ с кардиопротекторным действием среди производных глутаминовой кислоты на 20 с проведения пробы с адреналином у стрессированных животных, получавших гидрохлорид 3-фенилглутаминовой кислоты - соединение РГПУ-135, прирост скорости сокращения и расслабления миокарда, ЛЖД и ЧСС относительно исходных значений составил 43,2 (p<0,05); 54,4 (p<0,05); 46,0 (p<0,05) и 22,1% соответственно, что было достоверно выше по сравнению с контрольной группой стрессированных животных. При окклюзии восходящей части дуги аорты прирост показателей +dP/dt max, -dP/dt max, ЛЖД и МИФС относительно исхода составил на 5 секунде 70,3; 71,7; 82,6 (p<0,05) и 114,0% соответственно. На 30 секунде прирост был равен — 49,2 (p<0,05); 48,3; 57,4 (p<0,05) и 71,3 (p<0,05)% по сравнению с исходными данными, что существенно превосходило показатели группы сравнения (Таблица 2).

Модификация соединения РГПУ-135 замещением двух гидроксильных групп метильными радикалами привела к образованию диметилового эфира гидрохлорида 3-фенилглутаминовой кислоты — соединение РГПУ-238, которое в большей степени, чем соединение РГПУ-135 способствует увеличению функциональных резервов сердца у стрессированных животных при проведении

нагрузочных проб. Введение исследуемого соединения способствовало приросту +dP/dt max, -dP/dt max, ЛЖД и ЧСС в ответ на нагрузку адреналином, который составил 54,3 (p<0,05); 64,2 (p<0,05); 70,1 (p<0.05) и 39.7 (p<0.05)% соответственно по сравнению с исходными значениями, что было достоверно выше относительно прироста контрольной группы. В условиях максимальной изометрической нагрузки у стрессированных животных, получавших соединение РГПУ-238, прирост скорости сокращения и расслабления миокарда, ЛЖД и МИФС через 5 сек после окклюзии восходящей части дуги аорты составил 63,2 (p<0.05); 60,8 (p<0.05); 111,7 (p<0.05) и 208,5 (p<0.05)% соответственно относительно исхода, что также значительно превышало прирост группы контроля. На 30-й секунде прирост равнялся 39,6 (p<0,05); 33,9 (p<0,05); 92,9 (p<0.05) и 154,8 (p<0.05)% соответственно, что было статистически значимо выше по сравнению с показателями контрольной группы стрессированных животных и свидетельствует о способности соединения РГПУ-238 повышать и сохранять функциональные резервы сердца в условиях стресса на достаточно высоком уровне (Таблица 2).

Замещение метильных групп образованию ЭТИЛЬНЫМИ привело диэтилового эфира гидрохлорида 3-фенилглутаминовой кислоты (соединение РГПУ-239). Прирост скорости сокращения и расслабления миокарда, ЛЖД и ЧСС при проведении пробы на адренореактивность составил 36,4; 49,0 (p<0,05); 49,0 (p<0.05) и 38,3 (p<0.05)% соответственно относительно исхода, что достоверно превосходило прирост группы контроля. При проведении максимальной изометрической нагрузки на 5 секунде окклюзии восходящей части дуги аорты прирост +dP/dt max, -dP/dt max, ЛЖД и МИФС был равен 50,9 (p<0,05); 62,3; 62,9 (p<0,05) и 114,2 (p<0,05)% по отношению к исходу, что также существенно превосходило показатели контрольной группы стрессированных животных. На 30 секунде показатели сократимости, ЛЖД и МИФС составили 30,2; 38,1; 49,2 (p<0.05) и 78,7 (p<0.05)%, что оставалось значительно выше прироста группы контроля (Таблица 2).

Присоединение хлора к фенильному кольцу эфира диметилового гидрохлорида 3-фенилглутаминовой кислоты (соединение РГПУ-240), так же как и введение в бензольное кольцо атома азота (соединение РГПУ-241), не приводило к увеличению кардиопротекторной активности. При проведении пробы на адренореактивность в группе животных, получавших соединение РГПУ-240, прирост +dP/dt max, -dP/dt max, ЛЖД и ЧСС составил 38,6 (p<0,05); 38,6; 40,2 (p<0,05) и 30,6% относительно исходных значений, что превышало значения прироста группы контроля. В условиях максимальной изометрической нагрузки на 5 секунде окклюзии аорты прирост ЛЖД и МИФС составил 57,3 (p<0,05) и 105,3 (p<0,05)% относительно исхода, что было достоверно выше показателей контрольной группы, прирост +dP/dt max и -dP/dt max был равен 42,8 и 48,0%, что существенно не отличалось от контроля. Через 30 секунд после пережатия восходящей части дуги аорты прирост показателей сократимости миокарда, ЛЖД и МИФС относительно исходных значений составил 17,9; 17,5; 17,4 и 43,7% превышало контрольной соответственно, что не показатели группы стрессированных животных (Таблица 2).

У животных, получавших соединение РГПУ-241, прирост скоростей сокращения и расслабления миокарда, ЛЖД в ответ на нагрузку адреналином равнялся 55,6 (p<0,05); 47,2 (p<0,05) и 49,6 (p<0,05)% относительно исходных значений, что было достоверно выше показателей стрессированных животных контрольной группы, прирост ЧСС - 26,9%. При окклюзии восходящей части дуги аорты прирост +dP/dt max, ЛЖД и МИФС на 5 секунде был равен 45,1 (p<0,05); 73,2 (p<0,05); 102,8 (p<0,05)% по сравнению с исходными значениями, что контрольной достоверно превышало значения группы стрессированных животных, прирост -dP/dt max - 54,7%. Через 30 секунд работы сердца в изометрическом режиме прирост МИФС относительно исхода составил 61,4 (p<0.05)%, что также оставалось выше контроля, прирост скорости сокращения и расслабления миокарда, ЛЖД - 27,9; 27,0 и 51,3% относительно исходных значений (Таблица 2).

При скрининге кардиопротекторным действием веществ с среди композиций 3-фенилглутамата с органическими кислотами выявлено, что наиболее выраженной активностью обладают композиции лимонной (соединение РГПУ-222) и янтарной (соединение РГПУ-223) кислотами. При проведении пробы на адренореактивность в группе стрессированных животных, получавших РГПУ-222, прирост скорости сокращения миокарда и ЛЖД относительно исхода соответствовал 54.2 (p<0.05) и 42.3 (p<0.05)%, что было достоверно выше значений контрольной группы, прирост скорости расслабления миокарда и ЧСС равнялся 42,3 и 8,7% что существенно не отличалось от группы контроля. При проведении максимальной изометрической нагрузки на 5 секунде окклюзии аорты прирост показателей +dP/dt max, -dP/dt max, ЛЖД и МИФС по отношению к исходным значениям был равен 23,5; 20,5; 24,0 и 32,9%, а на 30 секунде -8.2; 5.1; 8.2 и 12.0% соответственно, что не отличалось от значений контрольной группы (Таблица 2).

В группе стрессированных животных, получавших соединение РГПУ-223, прирост скорости расслабления миокарда в ответ на нагрузку адреналином составил 43,8 (р<0,05)% относительно исхода, что достоверно превосходило значение контрольной группы, прирост скорости сокращения миокарда, ЛЖД и ЧСС равнялся 34,6; 32,9 и 19,8% соответственно, что значимо не отличалось от группы контроля. На 5 секунде проведения максимальной изометрической прирост показателей сократимости миокарда, ЛЖД и соответствовал 60,8; 57,3; 48,7 и 93,2% по сравнению с иходными значениями, что было несколько выше показателей контрольной группы стрессированных животных. Через 30 секунд окклюзии восходящей части дуги аорты прирост показателей +dP/dt max и -dP/dt max составил 51,3 (p<0,05) и 46,6 (p<0,05)% соответственно относительно исходных параметров, что было достоверно выше значений контрольной группы животных, прирост ЛЖД и МИФС составил 40,2 и 76,8% соответственно. Однако полученные результаты свидетельствуют о том, что данные соединения не превосходят по силе кардиопротекторного действия соединение РГПУ-238 (Таблица 2).

Композиции 3-фенилглутаминовой кислоты с яблочной (соединение РГПУ-233) и салициловой (соединение РГПУ-234) кислотами оказались малоактивными при проведении нагрузочных проб. При введении соединения РГПУ-233 стрессированным животным прирост скорости сокращения и расслабления миокарда, ЛЖД и ЧСС относительно исходных значений в ответ на нагрузку адреналином равнялся 19,2; 20,3; 20,3 и 5,5% соответственно, достоверных различий с показателями контрольной группы выявлено не было. На 5 секунде окклюзии восходящей части дуги аорты прирост +dP/dt max, -dP/dt max, ЛЖД и МИФС относительно исходных параметров был равен 23,6; 18,3; 26,1 и 52,7%, а на 30 секунде — 14,8; 4,9; 16,9 и 34,7 (р<0,05)% соответственно, что также значимо не отличалось от значений группы контроля (Таблица 2).

В группе животных, получавших соединение РГПУ-234 прирост показателей сократимости миокарда, ЛЖД и ЧСС при проведении пробы на адренореактивность составил 41,6; 31,5; 39,2 (p<0,05) и 17,6% соответственно по сравнению с исходом. При проведении максимальной изометрической нагрузки на 5 секунде окклюзии аорты прирост +dP/dt max, -dP/dt max, ЛЖД и МИФС относительно исходных значений равнялся 42,2; 39,7; 40,3 и 76,8 (p<0,05)%, а на 30 секунде - 32,2; 24,3; 30,1 и 55,1 (p<0,05)% соответственно, что существенно не отличалось от таковых показателей группы контроля (Таблица 2).

Таким образом, скрининговое исследование кардиопротекторных свойств 9 производных глутаминовой кислоты в условиях 24 часового иммобилизационноболевого стрессирования позволило выявить соединения, повышающие функциональные резервы сердца в условиях стрессорного повреждения миокарда — РГПУ-135, РГПУ-238 и РГПУ-239. Наиболее активным оказалось соединение РГПУ-238, которое по силе кардиопротекторного эффекта не уступает препарату сравнения фенибуту.

Полученные в этой серии экспериментальные данные послужили основанием к проведению более углубленного изучения кардиопротекторных свойств соединения РГПУ-238 и, в частности, их зависимости от дозы.

3.2 Изучение зависимости кардиопротекторного эффекта соединения РГПУ-238 от дозы

Настоящая серия экспериментов преследовала решение задачи определения зависимости «доза-эффект» и поиск оптимальных эффективных и безопасных доз соединения РГПУ-238.

Данное исследование проведено с целью определения зависимости кардиопротекторного эффекта соединения РГПУ-238 от дозы (14,5; 28,7 и 57,4 мг/кг в/бр) по динамике ино- и хронотропной функции сердца в условиях острого стрессорного воздействия.

Эксперименты проведены на 30 белых беспородных крысах-самках массой 250-280 г, подвергшихся 24 часовому иммобилизационно-болевому стрессированию. Для оценки кардиопротекторного действия исследуемого соединения использовались проба на адренореактивность и максимальная изометрическая нагрузка.

Обнаружено, что при стимуляции адренорецепторов сердца у интактной группы животных прирост показателей сократимости миокарда, левожелудочкового давления и частоты сердечных сокращений относительно исходных значений составил 61,4; 45,1; 62,4 и 20,8% соответственно. У животных, подвергшихся острому иммобилизационно-болевому стрессированию, при введении адреналина прирост скоростей сокращения и расслабления миокарда, ЛЖД и ЧСС равнялся 25,1; 37,5; 32,7 и 25,0% соответственно по сравнению с исходными показателями, что было значительно ниже прироста интактной группы животных (Таблица 3).

Таблица 3. Влияние различных доз соединения РГПУ-238 на прирост скорости сокращения (+dP/dt max), скорости расслабления миокарда (-dP/dt max), левожелудочкового давления (ЛЖД), частоты сердечных сокращений (ЧСС) и максимальной интенсивности функционирования структур (МИФС) у стрессированных животных при проведении

нагрузочных проб (М±m).

Группы			Проба на	адренореакти	вность, прирост	г показателей в	%	
животных	+dP/dt max		-dP/dt max		ЛЖД		ЧСС	
Интактная	61,4±9,2		45,1±7,6		62,4±9,6		20,8±8,8	
Стресс+физ. р-р (контрольная)	25,1±4,1*		37,5±4,0		32,7±8,1*		25,0±6,7	
Стресс+РГПУ-238 14,5 мг/кг	38,0±7,3		34,4±7,3		49,3±7,8		18,9±7,2	
Стресс+РГПУ-238 28,7 мг/кг	54,3±4,5 [#]		64,2±	64,2±10,3 [#] 70,1±		±9,2 [#]	39,8±4,8	
Стресс+РГПУ-238 57,4 мг/кг	50,0±8,5		49,5±6,9		54,8=	±9,7 [#]	29,2±9,0	
	Максим	иальная изоме	трическая наг	рузка, прирос	т показателей в	%		
Группы	+dP/dt max		-dP/dt max		ЛЖД		МИФС	
животных	5 c	30 c	5 c	30 c	5 c	30 c	5 c	30 c
Интактная	59,4±7,2	41,6±7,0	52,2±8,7	31,2±5,8	64,4±7,0	42,9±9,0	104,1±16,1	61,3±17,2
Стресс+физ. р-р (контрольная)	35,2±7,9	14,4±8,2*	39,6±9,3	13,3±8,3*	24,3±2,9*	5,4±4,9*	53,8±10,6*	12,9±7,1*
Стресс+РГПУ-238 14,5 мг/кг	54,6±9,1	32,3±9,7	49,4±8,5	29,2±9,6	71,5±7,5 [#]	55,4±6,2 [#]	114,0±22,8	75,0±19,1
Стресс+РГПУ-238 28,7 мг/кг	63,2±8,2	39,6±4,6 [#]	60,8±6,5 [#]	33,9±5,0 [#]	111,7±7,1 [#]	92,9±6,4 [#]	208,5±25,6 [#]	154,8±22,3#
Стресс+РГПУ-238 57,4 мг/кг	60,7±5,8	39,5±5,5 [#]	57,7±9,9 [#]	36,6±9,8	105,5±13,2 [#]	82,3±12,9 [#]	185,2±29,1 [#]	129,8±23,7 [#]

Примечание:

^{* -} изменения достоверны относительно интактной группы при р<0,05 с использованием U-критерия Манна–Уитни;

^{# -} изменения достоверны относительно контрольной группы стрессированных животных при p<0,05 с использованием U-критерия Манна— Уитни.

При проведении максимальной изометрической нагрузки у интактных животных прирост скорости сокращения и расслабления миокарда, ЛЖД и МИФС на 5 секунде окклюзии восходящей части дуги аорты равнялся 59,4; 52,2; 64,4 и 104,1% соответственно по отношению к исходным показателям. На 30 секунде проведения нагрузки прирост +dP/dt max, -dP/dt max, ЛЖД и МИФС составил 41,6; 31,2; 42,9 и 61,3% соответственно. У стрессированных животных контрольной группы прирост показателей сократимости миокарда, ЛЖД и МИФС на 5 секунде пережатия восходящей части дуги аорты был равен 35,2; 39,6; 24,3 и 53,8% соответственно относительно исхода, что было значительно меньше показателей интактной группы. Через 30 сек работы сердца в изометрическом режиме у контрольной группы стрессированных животных прирост +dP/dt max, -dP/dt max, ЛЖД и МИФС составил 14,4; 13,3; 5,4 и 12,9% соответственно (Таблица 3).

В группе животных, получавших соединение РГПУ-238 в дозе 14,5 мг/кг, при проведении пробы на адренореактивность прирост +dP/dt max, -dP/dt max, ЛЖД и ЧСС относительно исходных значений составил 38,0; 34,4; 49,3 и 18,9% соответственно, что достоверно не отличалось от показателей контрольной группы. При окклюзии восходящей части дуги аорты на 5-ой секунде прирост показателей сократимости миокарда был равен 54,6 и 49,4% по сравнению с исходом, ЛЖД – 71,5%, МИФС – 114,0%. На 30 секунде проведения нагрузки прирост показателей составил 32,3; 29,2; 55,4 и 75,0% соответственно относительно исходных значений (Таблица 3).

При введении исследуемого соединения в дозе 28,7 мг/кг прирост скорости сокращения и расслабления миокарда, ЛЖД и ЧСС в ответ на нагрузку адреналином был равен 54,3; 64,2; 70,1 и 39,8% соответственно по сравнению с исходными показателями, что было достоверно выше прироста стрессированных животных группы контроля. Прирост +dP/dt max, -dP/dt max, ЛЖД и МИФС на 5 секунде изометрической нагрузки составил 63,2; 60,8; 111,7 и 208,5%, на 30 секунде – 39,6; 33,9; 92,9 и 154,8% соответственно относительно исхода, что было

достоверно выше прироста соответствующей контрольной группы животных (Таблица 3).

Дальнейшее увеличение дозы соединения РГПУ-238 до 57,4 мг/кг не приводило к усилению кардиопротекторного действия, прирост +dP/dt max, -dP/dt max, ЛЖД и ЧСС в ответ на введение адреналина составил 50,0; 49,5; 54,8 и 29,2% соответственно относительно исхода. При проведении изометрической нагрузки прирост показателей сократимости, ЛЖД и МИФС на 5 секунде был равен 60,7; 57,7; 105,5 и 185,2%, на 30 секунде — 39,5; 36,6; 82,3 и 129,8% соответственно по отношению к исходным значениям (Таблица 3).

Таким образом, при изучении зависимости «доза-эффект» было установлено, что при проведении нагрузочных проб наиболее выраженную кардиопротекторную активность соединение РГПУ-238 проявляет в дозах 28,7 и 57,4 мг/кг в/бр. Поскольку, увеличение дозы исследуемого вещества до 57,4 мг/кг не приводило к усилению кардиопротекторного действия соединения РГПУ-238 в дальнейших исследованиях данное вещество использовали в дозе 28,7 мг/кг.

В результате проведенных испытаний установлено, что при внутрибрюшинном введении соединения РГПУ-238 ЛД₅₀ равна 1619,8 (1339,0-1959,5) мг/кг. Гибель животных, как правило, наступала в течение первых двух часов. В дальнейшем у оставшихся в живых подопытных животных общее Терапевтический (ПП) 56,4. состояние нормализовалось. индекс равен Исследуемое соединение соответствует 5 классу токсичности.

Таким образом, из проведенного эксперимента следует, что соединение РГПУ-238 обладает низкой токсичностью и большой широтой терапевтического действия.

ГЛАВА 4. ОЦЕНКА КАРДИОПРОТЕКТОРНОГО ДЕЙСТВИЯ СОЕДИНЕНИЯ РГПУ-238 В УСЛОВИЯХ БЛОКАДЫ СТРЕССЛИМИТИРУЮЩИХ СИСТЕМ

4.1 Влияние исследуемого соединения на ино- и хронотропные резервы сердца при блокаде различных NO-синтаз

Воздействие стрессорных факторов вызывает угнетение сократимости миокарда, а также снижение ино- и хронотропных резервов сердца (Меерсон Ф.З., 1984; Перфилова В.Н., 2009). Существующие в организме стресс-лимитирующие системы ограничивают стресс-реакцию и негативное влияние на органы-мишени, значительная роль в этом принадлежит NO- и ГАМК-ергической системам (Малышев И.Ю. и др., 2000; Gealekman O. et al., 2002).

Увеличение синтеза оксида азота при стрессе сдерживает активацию симпатико-адреналовой системы, ингибируя секрецию «гормонов и медиаторов стресса» - кортикотропин-рилизинг-фактора, АКТГ, вазопрессина и катехоламинов, модулирующих эндокринные, метаболические и др. реакции организма в ответ на воздействие различных стрессорных факторов (Манухина Е.Б. и др., 2000; Herbert J. et al., 2006).

В связи с этим представляется перспективным создание и разработка новых веществ, способных ограничивать стрессорное повреждение миокарда и активировать стресс-лимитирующие системы.

В результате проведенного эксперимента было установлено, что 24-х часовое иммобилизационно-болевое стрессирование контрольных групп животных приводит к снижению выживаемости крыс при проведении нагрузочных проб. После проведения нагрузки адреналином погибло 3 стрессированных животных из 18.

Подавление продукции синтеза оксида азота введением стрессированным животным неселективного блокатора NO-синтаз - L-NAME - вызывало

выраженное снижение устойчивости к стрессу и хирургическому вмешательству: 8 животных из 31 погибло во время стресса, 5 животных после наркоза, 6 животных при вскрытии грудной клетки и 5 после проведения пробы на адренореактивность. В группе животных, получавших препарат сравнения фенибут и L-NAME, 6 животных из 12 погибло во время стресса и одно после проведения нагрузки адреналином. В других группах животных случаев гибели не наблюдалось (Таблица 4).

Таблица 4. Влияние соединения РГПУ-238 и фенибута на выживаемость животных при 24 часовом иммоболизационноболевом стрессе в условиях блокады NO-синтаз и ГАМК_А-рецепторов.

Γ	Кол-во	Гибель животных					
Группы животных	животных в группе	Во время стрессирования	После наркоза	При вскрытии грудной клетки	После нагрузки адреналином		
Интактная	14	0	0	0	0		
Физ. p-p+стресс (контрольная)	18	0	0	0	3		
Стресс+аминогуанидин	6	0	0	0	0		
Стресс+7-нитроиндазол	6	0	0	0	0		
Ctpecc+L-NAME	31	8	5	6	5		
Стресс+бикукулин	6	0	0	0	0		
Стресс+аминогуанидин+РГПУ-238	6	0	0	0	0		
Стресс+аминогуанидин+фенибут	6	0	0	0	0		
Стресс+7-нитроиндазол+РГПУ-238	6	0	0	0	0		
Стресс+7-нитроиндазол+фенибут	6	0	0	0	0		
Стресс+L-NAME+РГПУ-238	6	0	0	0	0		
Стресс+L-NAME+фенибут	12	6	0	0	1		
Стресс+бикукулин+РГПУ-238	6	0	0	0	0		
Стресс+бикукулин+фенибут	6	0	0	0	0		

Обнаружено, что при стимуляции адренорецепторов сердца у интактной группы животных прирост показателей сократимости миокарда (+dP/dt max и -dP/dt max), левожелудочкового давления и ЧСС на 20 секунде после введения адреналина составил по сравнению с исходными значениями 60,4; 62,6; 58,9 и 50,9% соответственно. У животных, подвергшихся длительному эмоциональноболевому стрессированию, при введении адреналина прирост скоростей сокращения и расслабления миокарда (+dP/dt max и -dP/dt max), ЛЖД и ЧСС был достоверно ниже по сравнению с интактной группой и равнялся 30,5; 29,8; 30,4 и 25,6%, соответственно относительно исходных данных (Таблица 5).

При проведении пробы на адренореактивность у стрессированных животных, получавших ингибитор индуцибельной NO-синтазы аминогуанидин в дозе 50 мг/кг, прирост скорости сокращения и расслабления миокарда, ЛЖД составил 31,7; 36,8 и 53,2 соответственно, в сравнении с исходными значениями, что было несколько выше значений группы контроля, прирост ЧСС был ниже и равнялся 16,9%. В группе животных, получавших соединение РГПУ-238 и аминогуанидин, прирост +dP/dt max, -dP/dt max и ЛЖД был равен 49,5; 58,4 и 65,8% относительно исходных данных, что было достоверно выше по сравнению с показателями контрольной группы, прирост ЧСС составил 32,4%. При введении стрессированным животным, получавшим аминогуанидин, препарата сравнения -фенибута прирост показателей сократимости (+dP/dt max и -dP/dt max), ЛЖД и ЧСС равнялся 40,3; 27,9; 62,3 и 18,7% соответственно по отношению к исходным значениям и достоверно не отличался от прироста показателей группы животных, получавших аминогуанидин (Таблица 5).

Таблица 5. Влияние соединения РГПУ-238 и фенибута на скорость сокращения (+dP/dt max) и расслабления миокарда (-dP/dt max), ЛЖД, ЧСС и МИФС у стрессированных животных в условиях блокады различных NO-синтаз при проведении нагрузочных проб (М±m).

Проба на адренореактивность, прирост показателей в %						
+dP/dt max	-dP/dt max	лжд	ЧСС			
60,4±7,7	62,6±9,6	58,9±8,1	50,9±6,9			
30,5±2,4 [^]	29,8±3,5 [^]	30,4±3,7 [^]	25,6±3,9 [^]			
31,7±4,0	36,8±7,7	53,2±7,3	16,9±3,1			
49,5±3,3**	58,4±6,8**	65,8±6,0**	32,4±2,7			
40,3±9,6	27,9±5,8	62,3±13,5	18,7±6,6			
21,3± 1,5	18,8±3,5	25,1±3,1	16,4±2,2			
35,8±3,0 [#]	33,7±4,6 [#]	42,8±3,4 [#]	17,5±2,9			
40,1±7,0	37,3±5,3	52,8±10,2	22,0±4,6			
12,8±2,6*	17,6±7,4	18,4±4,4	13,3±6,3			
41,1±4,7 ^{##}	40,2±5,5 ^{##}	38,1±2,1 ^{##}	31,3±4,8			
26,3±2,8	25,9±2,5	25,6±2,2	29,2±7,0			
	60,4±7,7 30,5±2,4 [^] 31,7±4,0 49,5±3,3 ^{**} 40,3±9,6 21,3±1,5 35,8±3,0 [#] 40,1±7,0 12,8±2,6 [*] 41,1±4,7 ^{##}	$+dP/dt max$ $-dP/dt max$ $60,4\pm7,7$ $62,6\pm9,6$ $30,5\pm2,4^{\wedge}$ $29,8\pm3,5^{\wedge}$ $31,7\pm4,0$ $36,8\pm7,7$ $49,5\pm3,3^{***}$ $58,4\pm6,8^{***}$ $40,3\pm9,6$ $27,9\pm5,8$ $21,3\pm1,5$ $18,8\pm3,5$ $35,8\pm3,0^{\#}$ $33,7\pm4,6^{\#}$ $40,1\pm7,0$ $37,3\pm5,3$ $12,8\pm2,6^{*}$ $17,6\pm7,4$ $41,1\pm4,7^{\#\#}$ $40,2\pm5,5^{\#\#}$	+dP/dt max-dP/dt max $JЖД$ $60,4\pm7,7$ $62,6\pm9,6$ $58,9\pm8,1$ $30,5\pm2,4^{^{^{^{^{^{^{*}}}}}}}$ $29,8\pm3,5^{^{^{^{^{^{*}}}}}}$ $30,4\pm3,7^{^{^{^{^{^{^{*}}}}}}$ $31,7\pm4,0$ $36,8\pm7,7$ $53,2\pm7,3$ $49,5\pm3,3^{**}$ $58,4\pm6,8^{**}$ $65,8\pm6,0^{**}$ $40,3\pm9,6$ $27,9\pm5,8$ $62,3\pm13,5$ $21,3\pm1,5$ $18,8\pm3,5$ $25,1\pm3,1$ $35,8\pm3,0^{\#}$ $33,7\pm4,6^{\#}$ $42,8\pm3,4^{\#}$ $40,1\pm7,0$ $37,3\pm5,3$ $52,8\pm10,2$ $12,8\pm2,6^{*}$ $17,6\pm7,4$ $18,4\pm4,4$ $41,1\pm4,7^{\#\#}$ $40,2\pm5,5^{\#\#}$ $38,1\pm2,1^{\#\#}$			

Продолжение таблицы 5.

Максимальная изометрическая нагрузка, прирост показателей в %									
Группы	+dP/dt max		-dP/dt max		ЛЖД		МИФС		
животных	5 c	30 c							
Интактная	59,7±5,9	45,6±5,9	54,5±5,8	40,1±5,4	95,5±12,2	80,5±12,7	168,7±22,1	133,0±21,7	
Стресс+физ. р-р (контрольная)	42,5±4,0 [^]	21,3±3,4 [^]	42,4±5,2 [^]	17,7±4,6 [^]	60,6±4,5 [^]	37,8±5,2 [^]	98,4±7,9 [^]	45,4±4,5 [^]	
Стресс+аминогуанидин	49,7±6,2	23,7±7,6	34,1±4,0	14,2±3,6	104,0±22,8	62,2±20,3	140,6±29,7	68,9±27,7	
Стресс+аминогуанидин+РГПУ-238	49,3±6,6	27,8±7,6	54,4±18,6	21,3±9,0	116,6±27,0	82,0±28,1	176,8±36,6	97,9±40,8	
Стресс+аминогуанидин+фенибут	39,5±13,6	22,0±10,2	46,6±4,4	28,3±4,3**	84,1±18,8	62,2±16,7	120,2±27,6	77,3±25,3	
Стресс+7-нитроиндазол	42,5±5,6	5,1±2,6*	28,2±4,7	5,4±2,8	63,5±6,6	32,2±6,2	95,9±9,4	40,8±8,1	
Стресс+7-нитроиндазол+РГПУ-238	60,9±11,1	39,2±9,9 [#]	58,3±9,3 [#]	36,7±7,6 [#]	112,0±6,9	83,9±8,3	183,2±21,2	119,3±18,5	
Стресс+7-нитроиндазол+фенибут	52,3±5,7	36,4±4,3 [#]	45,3±6,3	26,7±5,5	55,5±15,1	35,0±14,7	97,3±34,6	53,9±23,3	
Стресс+L-NAME	22,4±4,7*	-0,1±4,8*	18,2±2,3*	-9,7±3,0*	27,0±2,5	16,5±3,2	36,1±2,3	13,1±2,2	
Стресс+L-NAME+РГПУ-238	32,3±1,2**	14,5±2,8**	27,8±3,4**	14,0±5,8**	53,8±9,8	35,7±8,4	147,8±16,3**	104,5±20,9**	
Стресс+L-NAME+фенибут	26,8±2,5	6,3±1,6	22,0±1,9	5,8±1,5**	36,3±0,6	15,8±1,4	66,5±1,2	16,4±2,8	

Примечание:

^{^ -} изменения достоверны относительно интактной группы;

^{* -} изменения достоверны относительно контрольной группы стрессированных животных;

^{** -} изменения достоверны относительно группы стрессированных животных, получавших аминогуанидин;

^{# -} изменения достоверны относительно группы стрессированных животных, получавших 7-нитроиндазол;

^{## -} изменения достоверны относительно группы стрессированных животных, получавших L-NAME, при p<0,05 (критерий Краскела — Уоллиса, с пост-хоком Данна).

При проведении нагрузки адреналином у стрессированных животных, получавших селективный блокатор нейрональной NO-синтазы 7-нитроиндазол в дозе 50 мг/кг, прирост скорости сокращения, скорости расслабления миокарда, ЛЖД и ЧСС соответствовал 21,3; 18,8; 25,1 и 16,4% соответственно относительно исходных параметров, что было ниже по сравнению с показателями контрольной группы животных, получавших физиологический раствор. При введении стрессированным животным соединения РГПУ-238 и 7-нитроиндазола прирост +dP/dt max, -dP/dt max и ЛЖД был равен 35,8; 33,7 и 42,8% соответственно в сравнении с исходными данными, что достоверно превосходило значения группы животных получавших блокатор nNOS, прирост ЧСС практически не отличался и составил 17,5%. В группе животных, получавших фенибут и 7-нитроиндазол, прирост показателей сократимости, ЛЖД и ЧСС по отношению к исходу равнялся 40,1; 37,3; 52,8 и 22,0% соответственно, что существенно не отличалось от группы стрессированных животных, получавших блокатор нейрональной NO-синтазы (Таблица 5).

Неселективный блокатор NO-синтаз – L-NAME в дозе 10 мг/кг вызывал выраженное снижение показателей сократимости миокарда. У стрессированных животных в ответ на нагрузку адреналином: прирост +dP/dt max, -dP/dt max, ЛЖД и ЧСС составил 12,8; 17,6; 18,4 и 13,3% соответственно относительно исходных значений. При введении животным, подвергшимся 24-x часовому стрессированию, L-NAME И соединения РГПУ-238, прирост скорости сокращения, расслабления миокарда и ЛЖД равнялся 41,1; 40,2 и 38,1% по отношению к исходным показателям, что было достоверно выше, по сравнению с группой стрессированных животных, получавших неселективный блокатор NOсинтаз, прирост ЧСС был равен 31,3%. В группе животных, получавших фенибут и L-NAME, прирост показателей сократимости, ЛЖД и ЧСС относительно исхода составил 26,3; 25,9; 25,6 и 29,2% соответственно (Таблица 5).

При проведении максимальной изометрической нагрузки у интактных животных прирост показателей сократимости миокарда (+dP/dt max и -dP/dt max), ЛЖД и МИФС по сравнению с исходными значениями на 5 секунде окклюзии

восходящей части дуги аорты составил 59,7; 54,5; 95,5 и 168,7%, соответственно. Через 30 секунд проведения нагрузки прирост показателей по отношению к исходным данным составил 45,6; 40,1; 80,5 и 133,0% соответственно (Таблица 5).

В группе стрессированных животных прирост скорости сокращения и расслабления миокарда, ЛЖД и МИФС на 5 секунде составил 42,5; 42,4; 60,6 и 98,4% относительно исхода, а через 30 секунд - 21,3; 17,7; 37,8 и 45,4% соответственно, что было достоверно ниже по сравнению с показателями интактной группы животных (Таблица 5).

В группе животных, получавших аминогуанидин на 5 секунде окклюзии аорты прирост +dP/dt max, -dP/dt max, ЛЖД и МИФС составил 49,7; 34,1; 104,0 и 140,6% по сравнению с исходом, через 30 секунд работы сердца в изометрическом режиме прирост исследуемых показателей составил 23,7; 14,2; 62,2 и 68,9% соответственно, что существенно не отличалось от соответствующей группы контроля. При введении соединения РГПУ-238 на 5 секунде проведения нагрузки прирост скорости сокращения и расслабления миокарда, ЛЖД и МИФС составил относительно исхода 49,3; 54,4; 116,6 и 176,8%, через 30 секунд – 27,8; 21,3; 82,0 и 97,9% соответственно, что практически не отличалось от контрольной группы. У стрессированных животных, получавших фенибут и аминогуанидин, прирост показателей сократимости, ЛЖД и МИФС на 5 секунде составил по сравнению с исходом 39,5; 46,6; 84,1 и 120,2%, а к 30 секунде прирост составил 22,0; 28,3; 62,2 и 77,3% соответственно (Таблица 5).

У стрессированных животных, получавших 7-нитроиндазол, в условиях проведения максимальной изометрической нагрузки на 5-ой секунде окклюзии аорты прирост скорости сокращения и расслабления миокарда, ЛЖД и МИФС составил 42,5; 28,2; 63,5 и 95,9% соответственно относительно фоновых значений. На 30 секунде работы сердца в изометрическом режиме прирост скорости сокращения и расслабления миокарда и ЛЖД составил 5,1; 5,4; 32,2 и 40,8%, соответственно, что было ниже показателей группы сравнения. В группе животных, получавших соединение-РГПУ-238 и 7-нитроиндазол, прирост +dP/dt max, -dP/dt max, ЛЖД и МИФС на 5 секунде составил 60,9; 58,3; 112,0 и 183,2%

соответственно относительно фоновых значений, что было выше прироста соответствующей группы контроля. Через 30 секунд проведения нагрузки прирост скорости сокращения и расслабления миокарда составил 39,2 и 36,7%, что было достоверно выше значений контрольной группы, прирост ЛЖД и МИФС — 83,9 и 119,3%. При введении стрессированным животным фенибута, прирост показателей сократимости, ЛЖД и МИФС на 5 секунде изометрической нагрузки составил 52,3; 45,3; 55,5 и 97,3% относительно исхода, а на 30 секунде — 36,4; 26,7; 35,0 и 53,9% соответственно (Таблица 5).

В группе животных, получавших L-NAME, на 5 секунде окклюзии восходящей части дуги аорты, прирост +dP/dt max и -dP/dt max по отношению к фоновым значениям составил 22,4 и 18,2%, что было значительно ниже по сравнению с контрольной группой стрессированных животных, прирост ЛЖД и МИФС составил 27,0 и 36,1%. К 30 секунде работы сердца в изометрическом режиме прирост скорости сокращения и расслабления микарда составил -0,1 и -9,7%, что также было достоверно ниже группы контроля, прирост ЛЖД и МИФС - 16,5 и 13,1%. При введении соединения РГПУ-238 и L-NAME, прирост +dP/dt max, -dP/dt max и МИФС на 5 секунде проведения нагрузки составил 32,3; 27,8 и 147,8% относительно исходных показателей, что было достоверно выше показателей группы контроля, прирост ЛЖД составил 53,8%. Через 30 секунд окклюзии аорты прирост скорости сокращения и расслабления миокарда и МИФС также оставался повышенным по сравнению с исходом и составил 14,5; 14,0; 104,5%, прирост ЛЖД существенно не отличался от группы сравнения и составил 35,7%. У животных, получавших фенибут и L-NAME, прирост показателей сократимости миокарда, ЛЖД и МИФС на 5 секунде проведения нагрузки составил 26,8; 22,0; 36,3 и 66,5%, а на 30 секунде – 6,3; 5,8; 15,8 и 16,4% соответственно относительно фоновых значений, что достоверно не отличалось от группы животных, получавших L-NAME (Таблица 5).

В результате исследования выявлено, что соединение РГПУ-238 повышает стрессоустойчивость животных и ограничивает повреждающее действие стресса на сердце при блокаде NO-системы.

4.2 Изучение действия соединения РГПУ-238 на функциональные резервы сердца стрессированных животных в условиях блокады ГАМК_A-рецепторов

Реализация стресс-лимитирующего действия ГАМК-системы осуществляется преимущественно через ГАМК_А-рецепторы, синтез которых увеличивается в коре головного мозга после стрессорных воздействий (Моггоw A.L. et al., 1998). Они принимают участие в регуляции синтеза кортикотропинрилизинг-гормона и развитии адаптивных реакций организма в ответ на стрессфакторы (Пшенникова М.Г., 2000; Gunn B.G. et al., 2015).

Обнаружено, что при проведении пробы на адренореактивность в группе стрессированных животных, получавших блокатор ГАМК_А-рецепторов – бикукулин – прирост скорости сокращения и расслабления миокарда, ЛЖД и ЧСС был равен 20,7; 19,5; 23,1 и 29,0% соответственно по отношению к исходным данным. При введении стрессированным животным бикукулина и соединения РГПУ-238 прирост +dP/dt max, -dP/dt max и ЛЖД в сравнении с исходом составил 72,9; 62,1 и 62,2% соответственно, что достоверно превышало значения группы животных, получавших блокатор ГАМК_А-рецепторов, прирост ЧСС практически не отличался и соответствовал 31,7%. В группе животных, получавших фенибут и бикукулин, прирост показателей сократимости и ЛЖД равнялся 54,4; 63,5 и 53,8%, что также превосходило группу животных, получавших блокатор ГАМК_А-рецепторов, прирост ЧСС - 51,6% (Таблица 6).

Таблица 6. Влияние соединения РГПУ-238 и фенибута на скорость сокращения (+dP/dt max) и расслабления миокарда (-dP/dt max), ЛЖД, ЧСС и МИФС у стрессированных животных в условиях блокады ГАМК_А-рецепторов при проведении нагрузочных проб (-dE/dt max).

Группы	Проба на адренореактивность, %										
животных	+dP/dt max		-dP/dt max		лжд		ЧСС				
Интактная	60,4	±7,7	62,6	±9,6	58,9±8,1		50,9±6,9				
Стресс+физ. р-р	30,5=	±2,4 [^]	29,8	±3,5 [^]	30,4±3,7 [^]		25,6±3,9 [^]				
Стресс+бикукулин	20,7	±5,6	19,5±5,3		23,1±4,5		29,0±5,5				
Стресс+бикукулин+РГПУ-238	72,9±8,6 [#]		62,1±9,3 [#]		62,2±9,0		31,7±2,8				
Стресс+бикукулин+фенибут	54,4±5,2 [#]		63,5±6,7 [#]		53,8±4,6		51,6±9,4				
	Максимальная изометрическая нагрузка, %										
Группы	+dP/d	lt max	-dP/dt max		ЛЖД		МИФС				
животных	5 c	30 c	5 c	30 c	5 c	30 c	5 c	30 c			
Интактная	59,7±5,9	45,6±5,9	54,5±5,8	40,1±5,4	95,5±12,2	80,5±12,7	168,7±22,1	133,0±21,7			
Стресс+физ. р-р	42,5±4,0	21,3±3,4 [^]	42,4±5,2	17,7±4,6 [^]	60,6±4,5	37,8±5,2 [^]	98,4±7,9 [^]	45,4±4,5 [^]			
Стресс+бикукулин	35,9±6,8	18,2±5,0	32,2±6,7	16,8±6,6	56,3±5,8	30,6±7,5	88,4±21,5	38,3±17,6			
Стресс+бикукулин+РГПУ-238	83,8±13,1 [#]	55,5±7,7 [#]	81,0±7,9#	56,3±8,9 [#]	149,1±28,7	134,8±27,1 [#]	244,9±52,4	187,3±37,6 [#]			
Стресс+бикукулин+фенибут	72,3±5,9 [#]	56,6±4,3 [#]	65,7±3,6 [#]	50,9±3,5 [#]	85,4±7,1	72,1±5,6	154,3±9,9	110,3±11,8			

Примечание:

^{^ -} изменения достоверны относительно интактной группы при p<0,05 (критерий Краскела — Уоллиса, с пост-хоком Данна);

^{# -} изменения достоверны относительно группы стрессированных животных, получавших бикукулин, при р<0,05 (критерий Краскела — Уоллиса, с пост-хоком Данна).

проведении максимальной изометрической нагрузки группе животных, получавших бикукулин, на 5 секунде окклюзии восходящей части дуги аорты прирост скорости сокращения и расслабления миокарда, ЛЖД и МИФС составил 35,9; 32,2; 56,3 и 88,4% соответственно по сравнению с фоновыми значениями. На 30 секунде проведения нагрузки прирост +dP/dt max, -dP/dt max, ЛЖД и МИФС составил 18,2; 16,8; 30,6 и 38,3% соответственно. При введении соединения РГПУ-238 стрессированным животным, получавшим бикукулин, прирост показателей сократимости миокарда, ЛЖД на 5 секунде окклюзии аорты составил 83,8; 81,0 и 149,1% относительно исхода, что было достоверно выше значений соответствующей контрольной группы, прирост МИФС тоже был выше и составил 244,9%. На 30 секунде работы сердца в изометрическом режиме прирост +dP/dt max, -dP/dt max, ЛЖД оставался значительно выше группы контроля и составил 55,5 56,3 и 134,8% соответственно, МИФС – 187,3%. У животных, получавших фенибут и бикукулин, прирост скорости сокращения и расслабления миокарда на 5 секунде проведения изометрической нагрузки составил 72,3 и 65,7%, что было достоверно выше по сравнению с контрольной группой, прирост ЛЖД и МИФС составил 85,4 и 154,3% соответственно в сранении с исходными показателями. Через 30 секунд окклюзии восходящей части дуги аорты прирост +dP/dt max и -dP/dt max составил 56,6 и 50,9%, что было выше значений соответствующей группы сравнения, ЛЖД и МИФС – 72,1 и 110,3% (Таблица 6).

Таким образом, исследуемое соединение способно повышать ино- и хронотропные резевы сердца стрессированных животных в условиях блокады ΓAMK_A -рецепторов.

ГЛАВА 5. ОЦЕНКА КАРДИОПРОТЕКТОРНОГО ДЕЙСТВИЯ СОЕДИНЕНИЯ РГПУ-238 У СТРЕССИРОВАННЫХ ЖИВОТНЫХ РАЗНЫХ ВОЗРАСТНЫХ ГРУПП

5.1 Влияние соединения РГПУ-238 и фенибута на функциональные резервы сердца крыс-самок в возрасте 6, 12 и 24 месяцев в условиях острого иммобилизационно-болевого стрессирования

Известно, что при старении морфофункциональные изменения сердечнососудистой системы, энергетического обмена и нейро-гуморальной регуляции развитию сердечно-сосудистых работы сердца приводят К заболеваний (Коркушко О.В. и др., 2012). По результатам многочисленных исследований установлено, что с возрастом снижается сократительная способность сердца, а также способность оптимально реагировать на стрессогенные воздействия, что приводит к повышению чувствительности сердца к действию стрессорных факторов (Lakatta E.G. et al., 2003). В связи с вышесказанным, представлялось целесообразным исследовать влияние нового производного глутаминовой кислоты – соединения РГПУ-238 – на ино- и хронотропные резервы сердца у животных разных возрастных групп в условиях острого иммобилизационноболевого стрессирования.

В результате исследования было обнаружено, что у интактных животных, возраст которых составил 6 месяцев, на 20-й секунде проведения нагрузки объемом прирост показателей сократимости миокарда (+dP/dt max и -dP/dt max), ЛЖД и ЧСС составил 58,7; 54,4; 47,9 и 6,9% соответственно по сравнению с исходными значениями. У животных, подвергшихся 24-х часовому стрессорному воздействию, прирост скорости сокращения и расслабления миокарда, ЛЖД и ЧСС на 20-й секунде был 31,4 (p<0,05); 29,0 (p<0,05); 29,0 и -5,5%, что было

значительно ниже по сравнению с группой животных положительного контроля (Таблица 7).

В группе животных, получавших соединение РГПУ-238, при проведении нагрузки объемом прирост +dP/dt max, -dP/dt max, ЛЖД и ЧСС на 20 секунде составил относительно исходных показателей 48,8; 33,6; 19,2 и 6,7% отличалось от контрольной группы достоверно соответственно, что не стрессированных животных. При введении стрессированным животным препарата сравнения – фенибута прирост показателей сократимости, ЛЖД и ЧСС тоже существенно не отличался от группы контроля и составил 50,3; 29,8; 31,8 и 4,8% соответственно (Таблица 7).

В условиях стимуляции адренорецепторов сердца прирост скорости сокращения и расслабления миокарда, ЛЖД и ЧСС в группе интактных животных (возраст - 6 месяцев) на 20 секунде составил 94,0; 69,6; 74,1 и 21,9% соответственно по сравнению с исходными значениями. У стрессированных животных прирост +dP/dt max, -dP/dt max, ЛЖД и ЧСС составил 38,7 (p<0,05); 31,0; 31,3 и 39,9% соответственно, что было несколько ниже значений группы положительного контроля (Таблица 7).

При введении соединения РГПУ-238 стрессированным животным прирост показателей сократимости, ЛЖД и ЧСС в ответ на нагрузку адреналином составил 44,3; 41,3; 43,6 и 43,7% соответственно относительно фоновых значений, что было немного выше по сравнению с группой контроля. В группе животных, получавших фенибут, прирост скорости сокращения и расслабления миокарда, ЛЖД и ЧСС составил 46,4; 25,6; 48,4 и 28,8% соответственно (Таблица 7).

Таблица 7. Влияние соединения РГПУ-238 и фенибута на скорость сокращения (+dP/dt max) и расслабления миокарда (-dP/dt max), ЛЖД, ЧСС и МИФС у стрессированных животных разного возраста в условиях острого иммобилизационно-болевого стрессирования при проведении нагрузочных проб (M±m).

			Самки в воз	расте 6 месяц	ев							
Группы	На	агрузка объем	иом, % прирос	ста	Проб	Проба на адренореактивность, % прироста						
животных	+dP/dt max	-dP/dt max	ЛЖД	ЧСС	+dP/dt max	-dP/dt max	ЛЖД	ЧСС				
Интактная	58,7±10,3	54,4±3,3	47,9±4,2	6,9±4,8	94,0±8,6	69,6±11,5	74,1±12,0	21,9±5,3				
Стресс+физ. р-р	31,4±6,1*	29,0±7,7*	30,8±6,7	-5,5±2,3	38,7±5,3*	31,0±8,0	31,3±7,2	39,9±6,3				
Стресс+РГПУ-238	48,8±6,0	33,6±8,2	19,2±6,6	6,7±5,2	44,3±4,0	41,3±5,5	43,6±6,3	43,7±11,9				
Стресс+фенибут	50,3±6,2	29,8±7,2	31,8±11,4	4,8±2,7	46,4±6,1	25,6±3,9	48,4±9,7	28,8±9,3				
Группы		Максимальная изометрическая нагрузка, % прироста										
животных	+dP/d	t max	-dP/d	t max	Л	лжд		ИФС				
MIDUITIDIA	5 c	30 c	5 c	30 c	5 c	30 c	5 c	30 c				
Интактная	90,3±6,1	57,9±3,4	87,5±8,2	44,0±4,6	161,6±17,5	146,4±20,0	296,2±61,8	187,1±41,1				
Стресс+физ. р-р	61,6±9,0	26,5±6,5*	49,6±8,3*	7,9±1,6	91,5±7,7*	59,9±5,2*	157,6±20,1	82,1±11,8				
Стресс+РГПУ-238	75,1±8,3	40,8±6,4	52,5±7,8	11,6±4,6	110,3±7,2	57,9±5,8	153,6±13,0	55,3±10,3				
Стресс+фенибут	56,0±5,0	34,8±4,2	47,5±8,6	9,7±2,9	107,8±8,3	77,8±4,4	206,5±20,0	113,8±13,9				

Продолжение таблицы 7.

			Самки в возр	расте 12 меся	цев							
Группы	На	Нагрузка объемом, % прироста				Проба на адренореактивность, % прироста						
животных	+dP/dt max	-dP/dt max	ЛЖД	ЧСС	+dP/dt max	-dP/dt max	лжд	ЧСС				
Интактная	52,1±6,9	59,0±7,6	39,7±8,5 [^]	10,9±8,8	69,9±6,8	66,1±6,7	59,8±8,0	37,0±9,7				
Стресс+физ. р-р	31,7±3,4*	44,3±10,7*	19,8±9,6	7,3±6,4	32,3±4,2*	25,6±2,9*	21,4±3,9*	31,3±8,0				
Стресс+РГПУ-238	70,0±6,4 ^{#^}	44,9±9,3	23,0±4,9	6,2±1,0	68,2±1,2 ^{#^}	68,2±4,3 ^{#^}	55,9±6,7 [#]	17,2±5,6				
Стресс+фенибут	57,4±7,5	43,5±8,4	32,0±7,9	9,5±4,8	70,9±9,8 ^{#^}	57,7±9,5 ^{#^}	60,2±5,6 [#]	34,8±17,2				
Грудии		Максимальная изометрическая нагрузка, % прироста										
Группы животных	+dP/d	t max	-dP/dt max		лжд		МИФС					
AMBOTHEM	5 c	30 c	5 c	30 c	5 c	30 c	5 c	30 c				
Интактная	88,3±9,3	56,3±6,7	62,6±10,7	16,8±6,9 [^]	124,7±18,7 [^]	102,7±14,4 [^]	192,8±35,6	116,3±18,1 [^]				
Стресс+физ. р-р	44,6±3,2*	24,4±4,3*	44,4±4,1	14,9±5,3	89,9±10,5	65,4±14,8	145,2±9,8	74,0±15,2				
Стресс+РГПУ-238	69,3±3,8 [#]	48,3±2,9 [#]	50,7±6,0	22,2±7,1 [^]	102,2±15,7	61,0±11,9	147,7±24,2	61,4±17,2 [^]				
Стресс+фенибут	68,5±6,9 [#]	41,8±7,6	66,0±9,6	21,6±8,0	102,7±17,3	71,4±14,2	179,2±33,2	76,2±17,9				

Продолжение таблицы 7.

Самки в возрасте 24 месяцев											
Группы	На	агрузка объем	юм, % прирос	ста	Проба на адренореактивность, % прироста						
животных	+dP/dt max	-dP/dt max	ЛЖД	ЧСС	+dP/dt max	-dP/dt max	лжд	ЧСС			
Интактная	35,3±8,2 ^{^&}	35,9±11,5 [^]	37,9±5,6 [^]	8,9±5,0	79,7±6,0 [^]	44,4±7,9 [^]	33,8±5,8 [^]	39,7±5,1			
Стресс+физ. р-р	9,1±1,6*^	10,2±2,4 [^]	8,5±5,0**	0,3±2,1	13,9±2,1**^	19,7±5,9 [^]	12,5±2,3 [^]	15,1±7,2			
Стресс+РГПУ-238	79,2±6,5 ^{#^}	64,5±5,1 ^{#^}	51,6±6,6 [#]	22,9±7,8 ^{#^&}	65,0±6,9 ^{#^}	50,0±6,1 ^{#^}	61,4±8,3 [#]	22,3±8,3			
Стресс+фенибут	51,7±8,5 [#]	57,1±9,0 [#]	36,6±9,3#	16,7±6,2 [#]	48,1±8,3 [#]	46,5±7,6 [#]	58,5±9,2 [#]	39,0±7,9			
Группы	Максимальная изометрическая нагрузка, % прироста										
животных	+dP/d	t max	-dP/d	t max	лжд		МИФС				
MIDOTIBA	5 c	30 c	5 c	30 c	5 c	30 c	5 c	30 c			
Интактная	70,3±5,3 ^{^&}	43,3±3,7 [^]	61,1±7,0 [^]	23,1±5,8 [^]	102,0±8,1 [^]	78,6±7,4 [^]	173,2±5,6 [^]	108,0±7,9°			
Стресс+физ. р-р	40,7±4,7*	8,5±1,8*^&	33,5±6,0	1,4±3,3*^&	42,7±3,5*^&	3,8±3,5*^&	85,6±12,0 ^{^&}	8,5±7,7*^&			
Стресс+РГПУ-238	62,5±4,5 [#]	40,4±4,3 [#]	42,5±5,8	23,5±6,2 ^{#^}	132,3±15,4 [^]	122,0±14,3 ^{#^}	228,0±23,2 [#]	191,5±17,1 ^{#^&}			
Стресс+фенибут	69,8±5,4 [#]	40,1±4,2 [#]	57,6±7,9 [#]	22,6±5,6 [#]	73,9±4,4 [^]	49,7±8,1 [^]	129,7±8,1 [^]	58,4±6,2 [^]			

Примечание:

^{* -} изменения достоверны относительно интактной группы;

^{# -} изменения достоверны относительно контрольной группы стрессированных животных;

^{^ -} изменения достоверны относительно аналогичной группы животных в возрасте 6 месяцев;

[&]amp; - изменения достоверны относительно аналогичной группы животных в возрасте 1 года при р<0,05 (критерий Крускала – Уоллиса, с постхоком Данна).

Окклюзия восходящей части дуги аорты у интактных животных (возраст - 6 месяцев) приводила к увеличению показателей сократимости (+dP/dt max и -dP/dt max). ЛЖД и максимальной интенсивности функционирования структур относительно исходных значений на 5 секунде проведения нагрузки на 90,3; 87,5; 161,6 и 296,2%, на 30 секунде – на 57,9; 44,0; 146,4 и 187,1% соответственно по сравнению с исходными значениями. В группе стрессированных животных, прирост +dP/dt max, -dP/dt max, ЛЖД и МИФС составил на 5 секунде окклюзии аорты 61,6; 49,6 (p<0,05); 91,5 (p<0,05) и 157,6%, а на 30 секунде – 26,5 (p<0,05); 7,9; 59,9 (p<0,05) и 82,1% соответственно, что было ниже значений группы положительного контроля. При введении соединения РГПУ-238 стрессированным животным прирост показателей сократимости, ЛЖД и МИФС относительно фоновых значений на 5 секунде проведения нагрузки составил 75,1; 52,5; 110,3 и 153,6%, на 30 секунде – 40,8; 11,6; 57,9 и 55,3% соответственно. В группе животных, получавших фенибут, прирост скорости сокращения и расслабления миокарда, ЛЖД и ЧСС составил на 5 секунде окклюзии восходящей части дуги аорты 56,0; 47,5; 107,8 и 206,5%, а на 30 секунде – 34,8; 9,7; 77,8 и 113,8% соответственно (Таблица 7).

У интактных животных, возраст которых составил 12 месяцев, при проведении нагрузки объемом показатели сократимости миокарда (+dP/dt max и dP/dt max), ЛЖД и ЧСС повысились относительно исходных значений на 52,1; 59,0; 39,7 и 10,9% соответственно. У стрессированных животных того же возраста прирост скорости сокращения и расслабления миокарда, ЛЖД и ЧСС составил 31,7 (p<0,05); 44,3 (p<0,05); 19,8 и 7,3%, что было ниже показателей группы положительного контроля и существенно не отличался от такового при сравнении с 6 месяными крысами. В группе животных, получавших соединение РГПУ-238 прирост +dP/dt max, -dP/dt max, ЛЖД и ЧСС в ответ на нагрузку объемом равнялся 70,0 (p<0,05); 44,9; 23,0 и 6,2%, соответственно по отношению к исходу, при этом скорость сокращения миокарда была выше по сравнению с показателем аналогичной животных В возрасте 6 При группы месяцев. введении стрессированным животным фенибута прирост показателей сократимости

миокарда, ЛЖД и ЧСС составил 57,4; 43,5; 32,0 и 9,5%, что достоверно не отличалось от показателей группы контроля и от животных аналогичной группы 6 месячного возраста (Таблица 7).

При проведении нагрузки адреналином у интактных животных (возраст – 12 месяцев) прирост скорости сокращения и расслабления миокарда, ЛЖД и ЧСС по отношению к исходным значениям составил 69,9; 66,1; 59,8 и 37,0%, что существенно не отличалось от такового 6 месячных крыс. У животных, подвергшихся 24-х часовому стрессированию, прирост +dP/dt max, -dP/dt max, ЛЖД и ЧСС составил 32,3 (p<0,05); 25,6 (p<0,05); 21,4 (p<0,05) и 31,3%, что было существенно ниже значений группы положительного контроля и достоверно не отличалось от показателей 6 месячных крыс. При введении соединения РГПУ-238 стрессированным животным прирост показателей сократимости миокарда, ЛЖД и ЧСС при проведении пробы на адренореактивность составил 68,2 (p<0,05); 68,2 (p<0.05); 55,9 (p<0.05) и 17,2% соответственно относительно исхода, что было значительно выше значений контрольной группы, а прирост +dP/dt max и -dP/dt тах достоверно превосходил показатели такой же группы животных 6 месячного возраста. В группе животных, получавших фенибут прирост +dP/dt max, -dP/dt max, ЛЖД и ЧСС составил 70,9 (p<0,05); 57,7 (p<0,05); 60,2 (p<0,05) и 34,8%, что было также выше показателей группы контроля, а прирост скоростей сокращения расслабления статистически значимо миокарда первосходил таковой аналогичной группы животных в возрасте 6 месяцев (Таблица 7).

В условиях максимальной изометрической нагрузки у интактных животных (возраст — 12 месяцев) на 5 секунде окклюзии восходящей части дуги аорты прирост скорости сокращения и расслабления миокарда, ЛЖД и МИФС по сравнению с исходными значениями составил 88,3; 62,6; 124,7 и 192,8%, а на 30 секунде — 56,3; 16,8; 102,7 и 116,3% соответственно, что было ниже по сравнению с аналогичной группой 6 месячных крыс. В группе стрессированных животных прирост показателей +dP/dt max, -dP/dt max, ЛЖД и МИФС на 5 секунде составил 44,6 (p<0,05); 44,4; 89,9 и 145,2%, на 30 секунде — 24,4 (p<0,05); 14,9; 65,4 и 74,0% соответственно, что было ниже значений группы положительного контроля и

достоверно не отличалось от таковых значений животных в возрасте 6 месяцев. У стрессированных животных, получавших исследуемое соединение, прирост показателей сократимости миокарда, ЛЖД и МИФС на 5 секунде проведения изометрической нагрузки составил 69,3 (p<0,05); 50,7; 102,2 и 147,7%, а через 30 секунд окклюзии аорты — 48,3 (p<0,05); 22,2; 61,0 и 61,4% соответственно относительно исходных параметров, что было выше относительно значений группы контроля, а прирост скорости расслабления и МИФС на 30 с превышал таковой аналогичной группы крыс в возрасте 6 месяцев. В группе животных, получавших фенибут, прирост +dP/dt max, -dP/dt max, ЛЖД и МИФС через 5 секунд окклюзии аорты составил 68,5 (p<0,05); 66,0; 102,7 и 179,2%, а через 30 секунд — 41,8; 21,6; 71,4 и 76,2%, соответственно, что было выше по сравнению с контрольной группой и существенно не отличалось от аналогичной группы 6 месячного возраста (Таблица 7).

В группе 24-х месячных интактных животных на 20-й секунде проведения нагрузки объемом прирост показателей сократимости миокарда (+dP/dt max и dP/dt max), ЛЖД и ЧСС составил 35,3; 35,9; 37,9 и 8,9% соответственно по сравнению с исходными значениями, что статистически значимо было ниже такового аналогичной группы в возрасте 6 и 12 месяцев. У животных, подвергшихся 24-х часовому стрессорному воздействию, прирост скорости сокращения и расслабления миокарда, ЛЖД и ЧСС на 20-й секунде составил 9,1 (p<0.05); 10.2; 8.5 (p<0.05) и 0.3%, что было ниже по сравнению с группой животных положительного контроля и аналогичной группы крыс 6 месячного группе животных, получавших соединение РГПУ-238, при проведении нагрузки объемом прирост +dP/dt max, -dP/dt max, ЛЖД и ЧСС на 20 секунде составил 79,2 (p<0,05); 64,5 (p<0,05); 51,6 (p<0,05) и 22,9% (p<0,05) соответственно относительно исхода, что было достоверно выше по сравнению с контрольной группой стрессированных животных и аналогичной группы 6 месячного возраста. При введении стрессированным животным фенибута прирост показателей сократимости, ЛЖД и ЧСС составил 51,7 (p<0,05); 57,1 (p<0,05); 36,6 (p<0.05) и 16.7% (p<0.05) соответственно, что так же было выше значений группы

контроля, однако существенных различий с аналогичной группой возраста 6 и 12 месяцев выявлено не было (Таблица 7).

В условиях стимуляции адренорецепторов сердца прирост скорости сокращения и расслабления миокарда, ЛЖД и ЧСС в группе интактных животных (возраст — 24 месяца) на 20 секунде составил 79,7; 44,4; 33,8 и 39,7% соответственно по сравнению с исходными значениями, что было ниже относительно значений аналогичной группы крыс в возрасте 6 месяцев. У стрессированных животных 24 месячного возраста прирост +dP/dt max, -dP/dt max, ЛЖД и ЧСС составил 13,9 (р<0,05); 19,7; 12,5 и 15,1% соответственно, что было немного ниже значений группы положительного контроля и аналогичной группы крыс в возрасте 6 месяцев (Таблица 7).

При введении соединения РГПУ-238 стрессированным животным прирост показателей сократимости, ЛЖД и ЧСС в ответ на нагрузку адреналином на 20 секунде составил 65,0 (р<0,05); 50,0 (р<0,05); 61,4 (р<0,05) и 22,3% соответственно относительно исходных значений, что было значительно выше показателей соответствующей группы контроля и достоверно отличалось от аналогичной группы 6 месячных крыс. В группе животных, получавших фенибут, прирост скорости сокращения и расслабления миокарда, ЛЖД и ЧСС составил 48,1 (р<0,05); 46,5 (р<0,05); 58,5 (р<0,05) и 39,0% соответственно, что также было выше по сравнению с контрольной группой, существенно не отличалось от показателей такой же группы животных в возрасте 6 и 12 месяцев (Таблица 7).

Окклюзия восходящей части дуги аорты у 24-х месячных интактных животных приводила к увеличению показателей сократимости (+dP/dt max и - dP/dt max), ЛЖД и максимальной интенсивности функционирования структур (МИФС) относительно исходных значений на 5 секунде проведения нагрузки на 70,3; 61,1; 102,0 и 173,2%, на 30 секунде — на 43,3; 23,1; 78,6 и 108,0% соответственно, что было ниже по сравнению с показателями аналогичной группы крыс в возрасте 6 месяцев. В группе стрессированных животных, прирост +dP/dt max, -dP/dt max, ЛЖД и МИФС составил на 5 секунде окклюзии аорты 40,7 (р<0,05); 33,5; 42,7 (р<0,05) и 85,6%, а на 30 секунде — 8,5 (р<0,05); 1,4 (р<0,05);

3,8 (р<0,05) и 8,5 (р<0,05) % соответственно, что было ниже значений группы положительного контроля и аналогичных групп в возрасте 6 и 12 месяцев. При введении соединения РГПУ-238 стрессированным животным того же возраста прирост показателей сократимости, ЛЖД и МИФС на 5 секунде проведения нагрузки составил 62,5 (р<0,05); 42,5; 132,3 и 228,0 (р<0,05) %, на 30 секунде – 40,4 (р<0,05); 23,5 (р<0,05); 122,0 (р<0,05) и 191,5% (р<0,05) соответственно относительно исходных параметров, что было значительно ниже по сравнению с контролем и статистически значимо выше по сравнению с аналогичной группой 6 месячного возраста. В группе животных, получавших фенибут, прирост скорости сокращения и расслабления миокарда, ЛЖД и ЧСС составил на 5 секунде окклюзии восходящей части дуги аорты 69,8 (р<0,05); 57,6 (р<0,05); 73,9 и 129,7%, а на 30 секунде — 40,1 (р<0,05); 22,6 (р<0,05); 49,7 и 58,4% соответственно, что также было выше значений группы контроля и аналогичной грцппы 6 месячного возраста (Таблица 7).

В результате исследования обнаружено зависимое от возраста снижение инотропной функции сердца У животных интактных групп. Острое иммобилизационно-болевое стрессорное воздействие вызывало снижение инотропных резервов сердца, наиболее выраженное у 24 месячных крыс. Введение соединения РГПУ-238 вызывало сохранение функциональных резервов сердца на более высоком уровне особенно существенно у животных в возрасте 24 В группах стрессированных животных, получавших исследуемые показатели повышались в равной степени у 6, 12 и 24 месячных самок.

5.2 Влияние соединения РГПУ-238 и фенибута на функциональные резервы сердца 12 и 24 месячных крыс-самцов при хроническом стрессорном воздействии

Известно, что длительное стрессорное воздействие приводит к депрессии сократительной функции миокарда, снижению функциональных резервов сердца (Перфилова В.Н. и др., 2010). За счет патологического изменения кардиомиоцитов, заключающихся в нарушении целостности клеточных мембран и митохондрий, снижении запаса гликогена, появлении жировых капель в саркоплазме, возникновении признаков кальциевой перегрузки (Акопян Е.С., 2003).

Эксперименты проведены на 80 белых нелинейных крысах-самцах предварительно рандомизированных по возрасту и массе. Животные были разделены на 8 групп по 10 в каждой: две интактные группы (положительный контроль) разного возраста (12 и 24 месяца), две группы негативного контроля (возраст 12 и 24 месяца), получавшие за 30 минут до стрессирования физ. p-р внутрибрюшинно в течение 7 дней, четыре опытные группы — 2 группы животных (возраст - 12 и 24 месяца), которым за 30 минут до стрессирования вводили соединение РГПУ-238 в дозе 28,7 мг/кг, 2 группы животных разного возраста, получавших препарат сравнения фенибут (25 мг/кг) в аналогичном контрольным группам режиме.

В результате исследования было обнаружено, что у интактных животных, возраст которых составил 12 месяцев, на 20-й секунде проведения нагрузки объемом прирост показателей сократимости миокарда (+dP/dt max и -dP/dt max), ЛЖД и ЧСС составил 56,5; 32,7; 49,4 и 3,1% соответственно по сравнению с исходными значениями. В группе животных того же возраста, подвергшихся хроническому стрессорному воздействию, прирост показателей +dP/dt max, -dP/dt max, ЛЖД и ЧСС на 20-й секунде составил 21,6 (p<0,05); 10,3 (p<0,05); 22,6

(p<0,05) и -5,8%, что было значительно ниже по сравнению с интактной группой (Таблица 8).

У 12-ти месячных животных, получавших соединение РГПУ-238, при проведении нагрузки объемом прирост скорости сокращения и расслабления миокарда, ЛЖД и ЧСС на 20 секунде составил 41,6 (p<0,05); 34,1 (p<0,05); 53,4 и 4,6% соответственно, что было выше по сравнению с контрольной группой стрессированных животных. В группе животных, получавших препарат сравнения – фенибут, прирост показателей сократимости, ЛЖД и ЧСС составил 40,2 (p<0,05); 28,7 (p<0,05); 35,9 и 5,2% соответственно (Таблица 8).

При проведении максимальной изометрической нагрузки прирост скорости сокращения и расслабления миокарда, ЛЖД и МИФС в группе интактных животных 12-ти месячного возраста на 5 секунде окклюзии восходящей части дуги аорты составил 73,6; 76,2; 82,3 и 189,6%, а на 30 секунде – 53,5; 43,6; 64,3 и 105,9% соответственно ПО сравнению c исходными значениями. У стрессированных животных прирост показателей +dP/dt max, -dP/dt max, ЛЖД и МИФС через 5 секунд проведения нагрузки составил 46,4; 43,7; 58,0 и 120,8%, а через 30 секунд – 24,3 (p<0,05); 19,5 (p<0,05); 30,3 и 25,8% (p<0,05) соответственно, что было ниже значений группы положительного контроля (Таблица 8).

В группе животных (возраст – 12 месяцев), получавших соединение РГПУ-238, прирост показателей сократимости, ЛЖД и МИФС на 5 секунде работы сердца в изометрическом режиме составил 73,0; 57,5; 108,7 и 204,0%, а на 30 -55,6 (p<0,05); 39,1; 81,3 и 120,2% (p<0,05) соответственно, что было значительно При выше сравнению c группой контроля. введении фенибута стрессированным животным, прирост скорости сокращения и расслабления миокарда, ЛЖД и МИФС через 5 секунд окклюзии аорты составил 66,7; 44,7; 90,4 и 165,6%, а через 30 секунд – 47,8 (p<0,05); 24,1; 68,0 и 94,9% соответственно (Таблица 8).

Таблица 8. Влияние соединения РГПУ-238 и фенибута на скорость сокращения и расслабления миокарда, ЛЖД, ЧСС и МИФС у стрессированных животных разного возраста при проведении нагрузочных проб (М±m).

			Возраст 12 м	месяцев					
Группы	Нагрузка объемом, %								
животных	+dP/dt	max	-dP/dt max		лжд		ЧСС		
Интактная	56,5±	11,3	32,7	32,7±4,2		49,4±6,0		3,1±4,1	
Стресс+физ. р-р	21,6±4,2*		10,3±2,3*		22,6±5,8*		-5,8±5,2		
Стресс+ РГПУ-238	41,6±2,5 [#]		34,1	34,1±6,7 [#]		53,4±7,3		4,6±1,5	
Стресс+ фенибут	40,2±4,5 [#]		28,7±2,6 [#]		35,9±7,1		5,2±2,9		
		Максималы	ная изометри	ическая нагр	узка, %				
Группы	+dP/dt	max	-dP/d	t max	ЛЭ	КД	MI	ΙФС	
животных	5 c	30 c	5 c	30 c	5 c	30 c	5 c	30 c	
Интактная	73,6±8,3	53,5±6,4	76,2±11,1	43,6±4,6	82,3±8,1	64,3±6,3	189,6±24,6	105,9±17	
Стресс+физ. р-р	46,4±4,6	24,3±4,9*	43,7±6,9	19,5±6,8*	58,0±5,6	30,3±9,4	120,8±20,0*	25,8±9,3	
Стресс+ РГПУ-238	73,0±6,1	55,6±4,2 [#]	57,5±3,5	39,1±1,8	108,7±10,0	81,3±8,2	204,0±11,9	120,2±13,	
Стресс+ фенибут	66,7±6,8	47,8±5,1 [#]	44,7±5,5	24,1±2,7	90,4±8,7	68,0±9,3	165,6±21,3	94,9±15,4	

Продолжение таблицы 8.

			Возраст 24	месяца						
Группы животных	Нагрузка объемом, %									
животных	+dP/dt	max	-dP/dt max		лжд		ЧСС			
Интактная	45,6±	7,4	25,7±4,3		39,4±9,6		-1,2±3,1			
Стресс+физ. р-р	18,0±3	3,4*	5,6±2,7*		10,4±2,0*		-0,9±1,5			
Стресс+ РГПУ-238	42,4±0	6,4#	37,8	38,7±		±4,4 [#]	21,5	21,5±5,0 ^{#^}		
Стресс+ фенибут	42,7±0	6,4#	30,5±7,7 [#]		40,5±10,8 [#]		1,2±5,1			
Группы			Макси	мальная изо	<u>І</u> метрическая н	агрузка, %				
животных	+dP/dt	max	-dP/d	t max	лжд		МИФС			
	5 c	30 c	5 c	30 c	5 c	30 c	5 c	30 c		
Интактная	60,3±7,4	37,6±5,5	51,6±5,5	27,4±5,1	122,1±15,3	87,6±11,6	217,6±34,1	102,8±19,8		
Стресс+физ. р-р	32,8±4,8*	11,4±3,6*	26,7±3,3	-0,9±4,3*	52,6±6,0*	20,4±7,2*	76,7±7,4*	11,3±8,9*		
Стресс+ РГПУ-238	56,7±6,4 [#]	32,6±5,1#	46,3±6,4	23,1±4,3 [#]	103,5±9,7 [#]	73,3±9,5 [#]	200,9±24,5 [#]	89,8±14,8 [#]		
Стресс+ фенибут	45,5±3,0	23,4±2,4	43,5±4,9	26,1±4,6 [#]	90,7±10,2	67,2±7,4 [#]	150,3±11,0	74,3±8,9 [#]		

Примечание:

^{* -} изменения достоверны относительно интактной группы;

^{# -} изменения достоверны относительно контрольной группы стрессированных животных;

^{^ -} изменения достоверны относительно группы животных, получавших фенибут, при p<0,05 (критерий Краскела — Уоллиса, с пост-хоком Данна).

При проведении нагрузки объемом у 24-х месячных интактных животных на 20 секунде прирост скорости сокращения и расслабления миокарда, ЛЖД и ЧСС по отношению к исходным значениям составил 45,6; 25,7; 39,4 и -1,2%. У животных того же возраста, подвергшихся хроническому стрессированию, прирост +dP/dt max, -dP/dt max, ЛЖД и ЧСС составил 18,0 (p<0,05); 5,6 (p<0,05); 10,4 (p<0,05) и -0,9%, что было существенно ниже значений группы положительного контроля. При введении соединения РГПУ-238 стрессированным животным прирост показателей сократимости миокарда, ЛЖД и ЧСС на 20 секунде составил 42,4 (p<0,05); 37,8 (p<0,05); 38,7 (p<0,05) и 21,5% (p<0,05) соответственно, что было достоверно выше по сравнению с соответствующим контролем. В группе животных, получавших фенибут, прирост показателей +dP/dt max, -dP/dt max, ЛЖД и ЧСС составил 42,7 (p<0,05); 30,5 (p<0,05); 40,5 (p<0,0) и 1,2%, что также было выше показателей группы контроля (Таблица 8).

В условиях максимальной изометрической нагрузки у интактных животных в возрасте 24 месяца на 5 секунде окклюзии восходящей части дуги аорты прирост скорости сокращения и расслабления миокарда, ЛЖД и МИФС составил 60,3; 51,6; 122,1 и 217,6% соответственно по сравнению с исходными значениями, а через 30 секунд проведения нагрузки прирост составил 37,6; 27,4; 87,6 и 102,8% соответственно. В группе стрессированных животных 24-х месячного возраста прирост показателей +dP/dt max, -dP/dt max, ЛЖД и МИФС на 5 секунде составил 32.8 (p<0.05); 26.7; 52.6 (p<0.05) и 76.7% (p<0.05), на 30 секунде – 11.4 (p<0.05); -0.9 (p<0.05); 20.4 (p<0.05) и 11.3% (p<0.05) соответственно, что было достоверно ниже по сравнению с интактной группой. В группе животных того же возраста, исследуемое соединение, прирост показателей сократимости получавших миокарда, ЛЖД и МИФС на 5 секунде проведения изометрической нагрузки составил 56,7 (p<0,05); 46,3; 103,5 (p<0,05) и 200,9% (p<0,05), а через 30 секунд окклюзии восходящей части дуги аорты -32,6 (p<0,05); 23,1 (p<0,05); 73,3 (p<0.05) и 89.8% (p<0.05) соответственно, что было значительно выше показателей соответствующей группы контроля. В группе животных, получавших фенибут, прирост +dP/dt max, -dP/dt max, ЛЖД и МИФС через 5 секунд окклюзии

аорты составил 45,5; 43,5; 90,7 и 150,3%, а через 30 секунд - 23,4; 26,1 (p<0,05); 67,2 (p<0,05) и 74,3% (p<0,05) соответственно, что также превышало прирост контрольной группы стрессированных животных (Таблица 8).

Таким образом, производное глутаминовой кислоты — соединение РГПУ- 238 — ограничивает повреждающее действие стресса на миокард, о чем свидетельствуют высокие показатели прироста +dP/dt max, -dP/dt max, ЛЖД и МИФС при проведении нагрузочных тестов, наиболее существенные у 24 месячных крыс.

ГЛАВА 6. ИЗУЧЕНИЕ МЕХАНИЗМА ДЕЙСТВИЯ НОВОГО ПРОИЗВОДНОГО ГЛУТАМИНОВОЙ КИСЛОТЫ

6.1 Оценка антиоксидантных и антигипоксических свойств соединения РГПУ-238 при стрессорном повреждении миокарда

В результате стрессорного воздействия избыток катехоламинов вызывает интенсификацию процессов перекисного окисления (Мальцев А.Н. и др., 2010; Pal R. et al., 2011; Pertsov S.S. et al., 2011; Menabde K.O. et al., 2011). Основным продуктом окислительного стресса являются активные формы кислорода (АФК), выступающие в качестве основных медиаторов клеточного повреждения вследствие их разрушающего действия на такие биологически важные молекулы, как липиды, белки, нуклеиновые кислоты (Меньшикова Е.Б. и др., 2006; Лущак В.И., 2007). Супероксидный и способны гидроксильный радикалы инициировать процессы перекисного окисления в эндоплазматическом ретикулуме, митохондриях, тем самым увеличивая проницаемость клеточных мембран для кальция, что в конечном итоге приводит к повреждению митохондрий, нарушению мембранного транспорта и гибели клеток (Меньщикова Е.Б. и др., 2008; Куликов Ю.В., 2009; Siwik D.A. et al., 2001).

В этой связи, представлялось целесообразным изучение влияния нового производного глутаминовой кислоты на выраженность процессов ПОЛ и активность антиоксидантных ферментов у животных, подвергшихся 24-х часовому иммобилизационно-болевому стрессорному воздействию.

В результате эксперимента было выявлено, что уровень диеновых коньюгатов (первичных продуктов ПОЛ) у стрессированных животных составил $3,14\pm0,18$ $D_{233}/мг$ белка, что было на 12,9% (p<0,05) выше, по сравнению с интактной группой, где данный показатель составил $2,78\pm0,22$ $D_{233}/мг$ белка. При

введении соединения РГПУ-238 стрессированным животным концентрация ДК была ниже на 20,1% (p<0,05) по сравнению с контрольной группой и составила $2,51\pm0,30$ $D_{233}/мг$ белка. Введение фенибута вызвало незначительное снижение уровня диеновых коньюгатов (на 9,2%) и составило $2,85\pm0,12$ $D_{233}/мг$ белка (Рисунок 7).

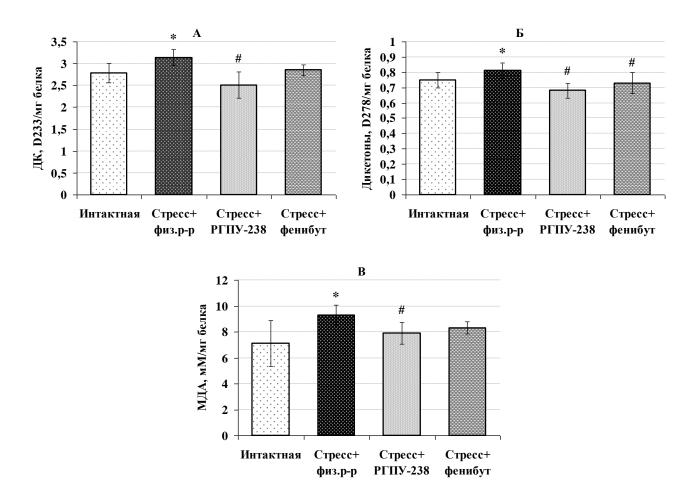


Рисунок 7. Влияние соединения РГПУ-238 и фенибута на концентрацию диеновых коньюгатов (A), дикетонов (Б) и малонового диальдегида (В) в митохондриях сердца стрессированных животных

При исследовании уровня дикетонов у интактных животных получено значение 0.75 ± 0.05 $D_{278}/\text{мг}$ белка. В группе животных, подвергшихся

^{*} - изменения достоверны относительно интактной группы (t-критерий Стьюдента, p<0,05); # - изменения достоверны относительно контрольной группы стрессированных животных (t-критерий Стьюдента с поправкой Бонферрони, p<0,05).

стрессированию, данный параметр составил 0.81 ± 0.05 $D_{278}/\text{мг}$ белка, что было на 8.0% (p<0.05) выше интакта. Введение нового производного глутаминовой кислоты вызвало снижение количества дикетонов на 16.0% (p<0.05) по сравнению с контрольной группой, значение равнялось 0.68 ± 0.05 $D_{278}/\text{мг}$ белка. В группе стрессированных животных, получавших фенибут, данный показатель составил 0.73 ± 0.07 $D_{278}/\text{мг}$ белка, что также было ниже значения контрольных животных на 9.9% (p<0.05) (Рисунок 7).

Выявлено, что у стрессированных животных повышалась концентрация малонового диальдегида - вторичного продукта ПОЛ и составляла 9,30±0,79 мМ/мг белка, в то время как у интактных животных показатель был равен 7,11±1,79 мМ/мг белка. Таким образом, концентрация МДА у стрессированных крыс превышала таковую группы контроля на 30,8% (p<0,05). В группе животных, получавших соединение РГПУ-238, концентрация МДА равнялась 7,90±0,84 мМ/мг белка, что было на 15,0% (p<0,05) ниже, чем у контрольной группы. Препарат сравнения фенибут вызывал менее выраженное снижение МДА, который составил 8,31±0,48 мМ/мг белка, что было на 10,6% ниже по сравнению с группой контроля (Рисунок 7).

Активность антиоксидантной системы оценивали по концентрации ферментов: супероксиддисмутазы, каталазы, глутатионпероксидазы.

Стрессорное воздействие приводило к снижению активности СОД, концентрация которого составила $34,63\pm5,33$ у.е./мг белка, что было на 32,4% (p<0,05) ниже значения интактной группы. У стрессированных животных, получавших соединение РГПУ-238, данный показатель составил $39,57\pm5,60$ у.е./мг белка, что было на 14,3% выше группы контроля. У животных, получавших фенибут, активность СОД составила $51,36\pm6,17$ у.е./мг белка, что было на 48,3% (p<0,05) выше группы контроля (Рисунок 8).

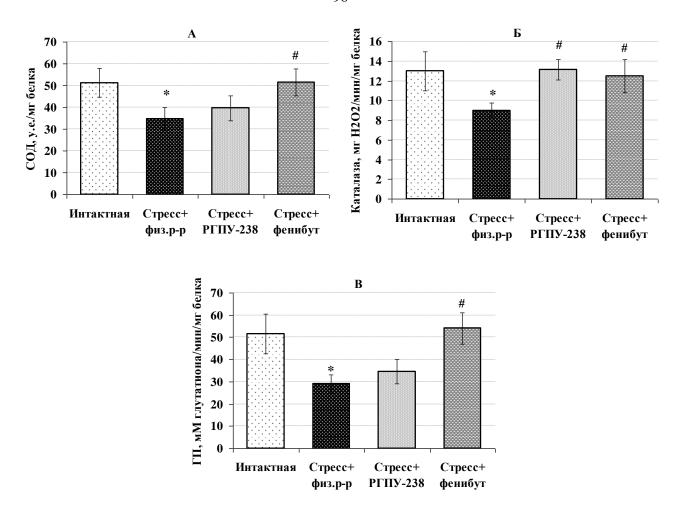


Рисунок 8. Влияние соединения РГПУ-238 и фенибута на активность супероксиддисмутазы (A), каталазы (Б) и глутатионпероксидазы (В) в митохондриях сердца стрессированных животных

* - изменения достоверны относительно интактной группы (t-критерий Стьюдента, p<0,05); # - изменения достоверны относительно контрольной группы стрессированных животных (t-критерий Стьюдента с поправкой Бонферрони, p<0,05).

Установлено, что у животных, подвергшихся острому иммобилизационно-болевому стрессированию, снижалась активность каталазы и равнялась $9,00\pm0,74$ мг H_2O_2 /мин/мг белка, в то время как в интактной группе показатель составил $12,98\pm1,99$ мг H_2O_2 /мин/мг белка. Таким образом, активность каталазы у стрессированных крыс снижалась на 30,7% (p<0,05) по сравнению с таковой у интактной группы. У стрессированных животных, получавших соединение РГПУ-238, активность каталазы равнялась $13,15\pm1,04$ мг H_2O_2 /мин/мг белка, что было на 46,1% (p<0,05) выше, чем в контрольной группе. Препарат сравнения фенибут

также вызывал повышение активности каталазы, концентрация МДА у данной группы животных составляла $12,49\pm1,72$ мг H_2O_2 /мин/мг белка, что было на 38.8% (p<0,05) выше по сравнению с группой контроля (Рисунок 8).

Активность глутатионпероксидазы у стрессированных животных составил 28,96±4,23 мМ глутатиона/мин/мг белка, что было на 43,8% (p<0,05) ниже, по сравнению с интактной группой, где данный показатель составил 51,58±8,96 мМ глутатиона/мин/мг белка. При введении соединения РГПУ-238 стрессированным животным активность ГП повысилась на 19,3% по сравнению с контрольной группой и составила 34,54±5,49 мМ глутатиона/мин/мг белка. Введение фенибута вызвало увеличение активности фермента на 86,6% (p<0,05), что равнялось 54,04±7,07 мМ глутатиона/мин/мг белка (Рисунок 8).

Таким образом, при иммобилизационно-болевом стрессорном воздействии наблюдается интенсификация процессов свободнорадикального окисления, на что указывает увеличение продуктов ПОЛ и снижение активности антиоксидантных ферментов. Соединение РГПУ-238 ограничивает процессы ПОЛ, способствуя снижению концентрации их продуктов и повышению активности антиоксидантных ферментов.

Изучение антигипоксического действия соединения РГПУ-238 проводилось на мышах-самцах массой 39±2 г. Исследуемое соединение в дозе 28,7 мг/кг и препарат сравнения - фенибут в дозе 25 мг/кг вводили внутрибрющинно за 20 мин. до начала эксперимента, контрольной группе животных вводился физ. p-р в эквивалентном объеме.

На модели нормобарической гипоксии с гиперкапнией было выявлено, что соединение РГПУ-238 увеличивало продолжительность жизни животных по сравнению с контрольной группой и данный эффект был сопоставим с препаратом сравнения (Рисунок 9).

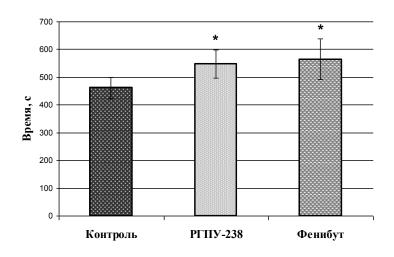


Рисунок 9. Влияние соединения РГПУ-238 на продолжительность жизни животных в условиях гипоксии

* - изменения достоверны относительно контрольной группы при p<0,05 (критерий Краскела — Уоллиса, с пост-хоком Данна).

Таким образом, полученные результаты свидетельствуют о наличии антигипоксического действия у соединения РГПУ-238.

6.2 Оценка эндотелиопротекторных свойств соединения РГПУ-238 при стрессорном повреждении миокарда

В ответ на действие стрессорного раздражителя происходит выброс норадреналина, активация ПОЛ, повышается уровень АД, что в целом приводит к развитию эндотелиальной дисфункции (Арутюнов Г.П., 2006).

В этой связи было исследовано влияние нового производного глутаминовой кислоты на эндотелий сосудов у животных, подвергшихся хроническому стрессорному воздействию. Вазодилатирующая функция эндотелия оценивалась по степени прироста кровотока в средней мозговой артерии в ответ на введение анализаторов: ацетилхолина, нитроглицерина и нитро-L-аргинина.

В группе интактных животных исходный мозговой кровоток (МК) равнялся 4,53 у.е. В ответ на введение ацетилхолина исследуемый показатель увеличился до 5,62 у.е., т.е. прирост составил 23,2% от исходного значения. У

стрессированных животных контрольной группы исходный показатель МК был ниже, чем у интактной и равнялся 3,87 у.е. На введение АЦХ прироста МК практически не было, уровень мозгового кровотока составил 4,14 у.е., что свидетельствует о выраженной дисфункции эндотелия в данной группе (Рисунок 10).

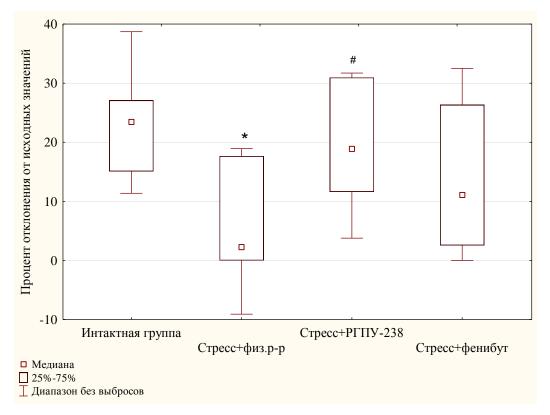


Рисунок 10. Влияние соединения РГПУ-238 и фенибута на мозговой кровоток стрессированных животных в условиях введения ацетилхолина

В группе стрессированных животных, получавших соединение РГПУ-238, МК был равен 4,50 у.е., после введения АЦХ увеличился до 5,36 у.е., что равнялось 20,0% (р<0,05) прироста. У животных, получавших препарат сравнения фенибут, величина исходного церебрального кровотока составила 4,06 у.е. Введение АЦХ вызвало повышение показателя максимально до 4,59 у.е., что равнялось 13,3% прироста (Рисунок 10).

^{* -} изменения достоверны относительно интактной группы;

^{# -} изменения достоверны относительно контрольной группы стрессированных животных при p<0,05 (критерий Краскела — Уоллиса, с пост-хоком Данна).

При введении ингибитора NO – синтаз - нитро-L-аргинина – интактным животным наблюдалось падение МК с 4,53 до 3,0 у.е., т.е. на 32,9%. В контрольной группе стрессированных животных данный показатель снижался на 22,8% с 3,87 до 3,02 у. е., что было меньше, чем в интактной группе. У стрессированных животных, получавших соединение РГПУ-238, величина исходного церебрального кровотока составила 4,5 у.е., в ответ на введение нитро-L-аргинина снизился до 2,96 у.е., что равнялось 33,8%. При введении фенибута стрессированным животным исходный МК составил 4,06 у.е., а при введении ингибитора NO-синтаз снизился на 24,4% и был равен 3,05 у.е. (Рисунок 11).

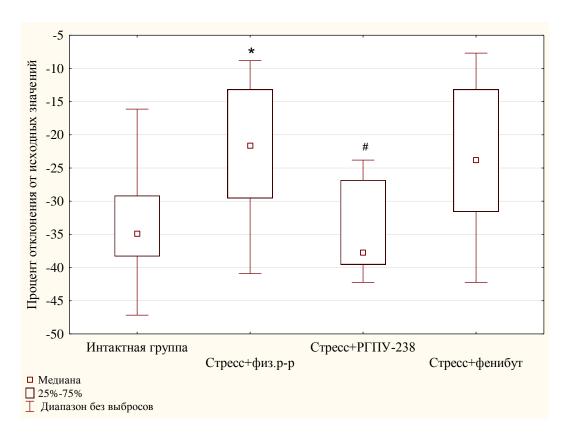


Рисунок 11. Влияние соединения РГПУ-238 и фенибута на мозговой кровоток стрессированных животных в условиях введения нитро-L-аргинина

Для оценки эндотелийнезависимой дилатации, т.е. чувствительности гладких мышц сосудов к действию вазоактивных агентов, использовался

^{* -} изменения достоверны относительно интактной группы;

^{# -} изменения достоверны относительно контрольной группы стрессированных животных при p<0,05 (критерий Краскела — Уоллиса, с пост-хоком Данна).

нитроглицерин. В группе интактных животных исходное значение церебрального кровотока составило 4,53 у.е., в ответ на введение нитроглицерина увеличился на 25,5%, что равнялось 5,64 у.е. У стрессированных животных контрольной группы исходный уровень МК составил 3,87 у.е., введение нитроглицерина повысило кровоток на 30,9%, что составило 5,03 у.е. (Рисунок 12).

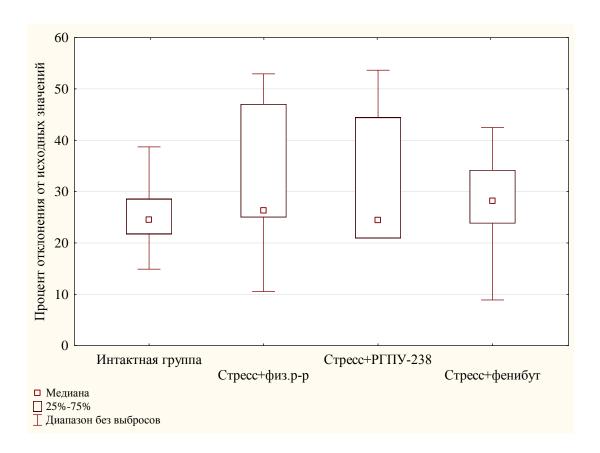


Рисунок 12. Влияние соединения РГПУ-238 и фенибута на мозговой кровоток стрессированных животных в условиях введения нитроглицерина

В группе стрессированных животных, получавших соединение РГПУ-238, МК был равен 4,5 у.е., после введения нитроглицерина увеличился до 5,51 у.е., что составило 24,4% прироста. У стрессированных животных, получавших препарат сравнения фенибут, исходное значение МК равнялось 4,06 у.е., а после введения нитроглицерина прирост составил 27,0%, что равнялось 5,13 у.е. (Рисунок 12).

Таким образом, при проведении пробы с нитроглицерином отмечается практически равное увеличение мозгового кровотока у животных всех групп, что свидетельствует о сохранении у них эндотелийнезависимой вазодилатации (Рисунок 12). Таким образом, хроническое стрессорное воздействие способствует развитию эндотелиальной дисфункции, о чем свидетельствует ослабление реакции сосудов на введение ацетилхолина и нитро-L-аргинина у животных контрольной группы. Соединение РГПУ-238 ограничивает нарушение функции эндотелия при хроническом стрессорном воздействии, проявляющееся более выраженным увеличением МК в ответ на введение АЦХ и снижением при введении нитро-L-аргинина, что свидетельствует о повышении стимулируемой и базальной продукции NO.

6.3 Влияние соединения РГПУ-238 на показатели системы гемостаза у животных, подвергшихся хроническому стрессорному воздействию

Представленные в предыдущем разделе данные свидетельствуют о выраженной эндотелиальной дисфункции, вызванной стрессорным воздействием, при которой нарушается не только эндотелий зависимая вазодилатация, но и его антитромботическая функция.

В патогенезе ишемических болезней органов и систем ведущую роль играет нарушение агрегационных свойств эритроцитов и тромбоцитов (Кукес В.Г. и др., 2004; Закирова А.Н. и др. 2006).

Стресс многими авторами рассматривается как самостоятельный фактор риска тромбоэмболических осложнений, изменению микроциркуляции, что может приводить к нарушению кровоснабжения различных органов (Кукес В.Г. и др., 2004).

В этой связи было исследовано влияние соединения РГПУ-238 на показатели гемостаза стрессированных крыс.

Обнаружено, что в контрольной группе стрессированных животных активированное частичное тромбопластиновое время (АЧТВ) сократилось на

35,0% (p<0,05) по сравнению с показателем интактных животных, что отражает активацию процессов коагуляции. Исследуемое соединение достоверно повышало АЧТВ на 48,7% (p<0,05), а фенибут – на 32,5% по сравнению с контрольной группой стрессированных животных (Таблица 9).

Протромбиновое время (ПВ) в контрольной группе уменьшилось на 19,4% по сравнению с аналогичным показателем интактных животных, что свидетельствует об активации внешнего пути образования тромбина на фоне стрессорного воздействия. При введении стрессированным животным соединения РГПУ-238 ПВ повышалось на 31,6% по сравнению с контролем. Введение препарата сравнения фенибута практически не влияло на данный показатель (Таблица 9).

Таблица 9. Влияние соединения РГПУ-238 и фенибута на показатели гемостаза стрессированных животных (M±m).

	Группы животных									
Показатели гемостаза	Интактная	Стресс +физ. p-p	Стресс +РГПУ-238	Стресс +фенибут						
АЧТВ, с	36,9±9,7	24,0±7,3*	35,7±6,8 [#]	31,8±6,2						
ПВ, с	31,4±6,2	25,3±6,2	33,3±7,5	25,4±8,3						
TB, c	20,3±3,9	14,9±3,1*	19,6±2,9 [#]	18,4±3,6						
Фибриноген, г/л	2,9±0,5	3,7±0,1*	2,9±0,6 [#]	3,1±0,4 [#]						
Степень арегации, %	17,3±4,6	29,9±5,9*	21,1±2,9#	20,6±4,1 [#]						
Скорость агрегации, %/мин	22,6±4,8	40,7±8,5*	25,9±5,1 [#]	26,9±4,1 [#]						

Примечание:

В ходе эксперимента выявлено, что хроническое стрессорное воздействие приводит к укорочению тромбинового времени (ТВ) на 26,6% (p<0,05) по сравнению с интактными животными, что также отражает активацию процессов

^{* -} изменения достоверны относительно интактной группы при p<0,05 (критерий Краскела — Уоллиса, с пост-хоком Данна);

^{# -} изменения достоверны относительно контрольной группы стрессированных животных при p<0,05 (критерий Краскела — Уоллиса, с пост-хоком Данна).

коагуляции в условиях длительного стрессорного воздействия. Введение исследуемого соединения и фенибута вызывало удлинение ТВ на 31,5% (p<0,05) и 23,4% соответственно по сравнению с показателем группы контроля (Таблица 9).

Концентрация фибриногена у срессированных животных увеличилась на 27,6% (p<0,05) по сравнению с интактной группой, что свидетельствует о риске тромбообразования у них. В группе животных, получавших соединение РГПУ-238 и фенибут, концентрация фибриногена в плазме крови была ниже на 21,6% (p<0,05) и 16,2% (p<0,05) соответственно по сравнению с контрольной группой стрессированных животных (Таблица 9).

Показано, что АДФ-индуцированные степень и скорость агрегации тромбоцитов у контрольной группы стрессированных животных были на 72,8% (p<0,05) и 80,1% (p<0,05) соответственно выше по сравнению с таковыми интактной группы. Соединение РГПУ-238 вызывало снижение степени и скорости агрегации тромбоцитов на 29,4% (p<0,05) и 36,4% (p<0,05); а фенибут - на 31,1% (p<0,05) и 33,9% (p<0,05) соответственно по сравнению с контрольной группой стрессированных животных (Таблица 9).

Таким образом, длительное стрессорное воздействие вызывает выраженные гиперкоагуляции И сдвиги сторону гиперагрегации В плазменнокоагуляционном и сосудисто-тромбоцитарном звеньях гемостаза, свидетельствует укорочение АЧТВ, протромбинового и тромбинового времени, повышение концентрации фибриногена, степени И скорости тромбоцитов у стрессированных животных по сравнению с интактными. Вероятно, данные эффекты возникают в результате увеличения концентрации стрессорном воздействии, адреналина при который, связываясь co специфическими мембранными рецепторами тромбоцитов, стимулирует синтез тромбоксана А₂ (Самаль А.Б. и др., 1990). Также можно предположить, что данный эффект адреналина, способного активировать агрегацию тромбоцитов, обусловлен модуляцией мембран при его взаимодействии с α-адренорецепторами и изменением её проницаемости к ионам Ca^{2+} (Smith S.K. et al., 1981). Кроме того, адреналин способствует освобождению из стенок сосуда факторов образования

протромбиназы, способен активировать фактор XII в плазме, усиливает расщепление жиров и жирных кислот, которые поступают в кровь и имеют протромбиназную активность (Долгов В.В. и др., 2005). Нельзя исключить возможное негативное влияние стресса на вазодилатирующую и антитромботическую функцию эндотелия, что также может лежать в основе повышения агрегации и свертываемости крови животных, подвергшихся стрессорному воздействию.

Исследуемое соединение РГПУ-238 и препарат сравнения фенибут ограничивают процессы гиперкоагуляции и гиперагрегации тромбоцитов, о чем свидетельствует АЧТВ, TΒ ΠВ, снижение удлинение И концентрации фибриногена, также степени И скорости агрегации тромбоцитов стрессированных животных, получавших данные вещества, по сравнению с контрольной группой стрессированных животных. Возможно, эти эффекты способствуют ограничению повреждающего действия стресса на эндотелий, способствуют нормализации его вазодилатирующей и антитромботической функции. Вероятно, наличие в структуре РГПУ-238 фрагмента сходного с фенибутом, объясняет его антикоагулянтное и антиагрегантное действие.

6.4 Мембранопротекторное действие соединения РГПУ-238

При стрессорном воздействии длительном активация свободнорадикального окисления приводит к разрушению клеточных мембран и энергообеспечения клеток. Так как универсальной плазматических мембран является мембрана эритроцитов, можно предположить, что снижение устойчивости эритроцитов к повреждающим агентам отражает дисфункцию клеток организма, деструкцию вызываемую различными токсическими веществами. В этой связи, было изучено влияние соединения РГПУ-238 у животных, подвергшихся хроническому стрессорному воздействию, на резистентность мембран эритроцитов на моделях кислотного и осмотического гемолиза.

Установлено, что у контрольной группы стрессированных животных кислотная резистентность эритроцитов была снижена на 16,3% (p<0,05) по сравнению с показателем интактной группы. Соединение РГПУ-238 и препарат сравнения фенибут повышали резистентность мембран эритроцитов к повреждающему действию стресса, о чем свидетельствует снижение степени кислотного гемолиза на 19,7 (p<0,05) и 9,4% (p<0,05), соответственно, по сравнению с группой контроля (Рисунок 13).

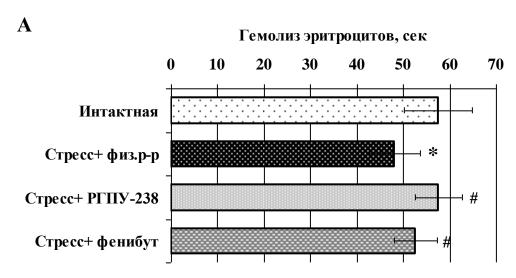


Рисунок 13. Влияние соединения РГПУ-238 на кислотную резистентность эритроцитов стрессированных животных

Обнаружено, что у стрессированных животных контрольной группы осмотическая резистентность эритроцитов была снижена в 1,7 раза по сравнению с таковой интактной группы. Введение соединения РГПУ-238 способствовало снижению степени гемолиза в 1,7 раза, а введение фенибута — в 2,2 раза по сравнению с контрольной группой стрессированных животных, что свидетельствует о повышении осмотической устойчивости мембран эритроцитов (Рисунок 14).

^{* -} изменения достоверны относительно интактной группы при p<0,05 (критерий Краскела — Уоллиса, с пост-хоком Данна);

^{# -} изменения достоверны относительно контрольной группы стрессированных животных при p<0,05 (критерий Краскела — Уоллиса, с пост-хоком Данна).

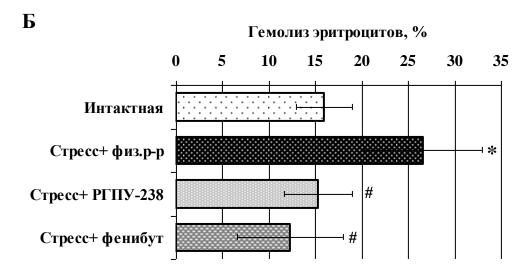


Рисунок 14. Влияние соединения РГПУ-238 на осмотическую резистентность эритроцитов стрессированных животных

Таким образом, проведенное исследование позволяет сделать заключение, что хронический стресс вызывает повреждение клеточных мембран, выражается в снижении резистентности эритроцитов к действию повреждающих агентов у стрессированных животных по сравнению с интактной группой. Производное глутаминовой кислоты - соединение РГПУ-238 и препарат фенибут оказывают мембранопротекторное действие, свидетельствует снижение степени гемолиза эритроцитов животных, получавших исследуемые вещества, по сравнению с контрольной группой стрессированных животных.

^{* -} изменения достоверны относительно интактной группы при p<0,05 (критерий Краскела — Уоллиса, с пост-хоком Данна);

^{# -} изменения достоверны относительно контрольной группы стрессированных животных при p<0,05 (критерий Краскела — Уоллиса, с пост-хоком Данна).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В настоящее время сердечно-сосудистые заболевания являются ведущей причиной инвалидизации и смертности взрослого населения в экономически развитых странах мира (Сайгитов Р.Т. и др., 2015; Табакаев М.В. и др., 2015). Эмоциональный стресс считается одним из главных этиологических факторов в возникновении болезней сердца. Проблема стресса с годами не теряет актуальности, а становится все более острой в связи с непрерывным ростом социальных, экономических, экологических, технологических и других изменений нашей жизни, а также существенным увеличением интенсивности труда у представителей многих профессий (Табакаев М.В. и др., 2015).

Существенную роль в патогенезе стрессорного повреждения миокарда играет повышение уровня катехоламинов, что влечет за собой увеличение потребности миокарда в кислороде, региональную гипоксию, а также образование и накопление активных форм кислорода, интенсификацию процессов перекисного окисления липидов (Khanna D. et al., 2006; Bacon S.L. et al., 2006; Derian W. et al., 2007; Sawai A. et al., 2007; Lee Y.P. et al., 2008; Chen F. et al., 2009; Prasadam I. et образующихся 2012). Под действием АФК. продуктов ПОЛ протеолитических ферментов происходит повреждение мембран сарколеммы, что приводит к нарушению работы ионных каналов клеток сердца и, как следствие, изменению транспорта кальция в кардиомиоцитах, развитию кальциевой контрактуры и гибели клеток (Меньшикова Е.Б. и др., 2006; 2008). Повреждение мембран кардиомиоцитов целостности клеточных вызывает падение сократительной активности сердца, развитие сердечной недостаточности (Tousoulis D. et al., 2012). Повреждение эндотелиоцитов АФК может привести к дисфункции, т.е. к преобладанию эндотелиальной вазоконстрикции вазодилатацией, а также к снижению антитромбогенного потенциала сосудистой стенки.

Стрессорные повреждения миокарда ограничивают стресс-лимитирующие системы, к которым относятся ГАМК- и NO-ергическая (Меерсон Ф.З., 1984;

Пшенникова М.Г., 2000; Малышев И.Ю. и др., 2000).

Основная роль в реализации стресс-лимитирующего действия ГАМК отводится ГАМК_А-рецепторам. Согласно литературным источникам установлено, что их синтез в коре головного мозга увеличивается после стрессорных воздействий, а на периферии ГАМК ограничивает высвобождение катехоламинов из симпатических нейронов, иннервирующих органы и ткани (Пшенникова М.Г., 2000; Gunn B.G. et al., 2015).

При стрессе также значительно возрастает синтез оксида азота в различных органах и тканях, он модулирует высвобождение гормонов в гипоталамусе и гипофизе, ограничивает активацию симпатико-адреналовой системы, ингибируя высвобождение катехоламинов из надпочечников (Малышев И.Ю. и др., 2000; Мацко М.А., 2004; Herbert J. et al., 2006). Кроме того, имеются данные, что NO может ограничивать повреждающее действие стресс-реакции за счет увеличения активности антиоксидантных ферментов и снижения интенсивности протекания свободно-радикальных процессов (Dobashi K. et al., 1997).

Возрастные морфофункциональные изменения в сердечно-сосудистой системе, характеризующиеся морфологическими И функциональными изменениями в сосудах, снижением скорости кровотока и поступления кислорода к тканям, увеличением образования АФК, нарушением энергетического обмена и регуляции работы сердца, обусловливают нейрогуморальной повышение чувствительности сердца к повреждающему действию стрессорных факторов (Townsend D. et al., 2011). В результате происходит снижение инотропной и функций сердца, которое проявляется уменьшением сокращения и расслабления миокарда, ударного и минутного объемов крови и функциональных резервов сердца (Uchino B.N. et al., 2005; Ikeda Y. et al., 2014; Zhang Y. et al., 2014).

Несмотря на большое количество кардиологических препаратов, прогноз у больных с сердечно-сосудистыми заболеваниями, зачастую остается крайне неблагоприятным. В этой связи является актуальным поиск и создание новых

эффективных лекарственных препаратов. Учитывая многообразный характер стрессорного повреждения миокарда, целесообразным является поиск и разработка лекарственных средств, одновременно влияющих на его различные патогенетические механизмы.

В последнее десятилетие ведется активный поиск кардиопротекторных препаратов, способных активировать стресс-лимитирущие системы, ограничивать последствия стрессорного воздействия, оказывать эндотелиопротекторное действие (Перфилова В.Н. и др., 2006; 2009; Маслов Л.Н. и др., 2007; 2012; Лишманов Ю.Б. и др., 2008; Матасова Л.В. и др., 2008; Тюренков И.Н. и др., 2008; Хазанов В.А. и др., 2009; Ковалева М.В., 2011; Гурова Н.А. и др., 2013; Чукаева И.И. и др., 2013).

Имеющиеся экспериментальные и клинические данные показывают, что глутаминовая кислота и ее производные обладают кардиопротекторными, противоаритмическими, протифибрилляторными (Филатова Н.М. и др., 2009; 2012; Блинов Д.С. и др., 2012; Гогина Е.Д. и др., 2012; Крыжановский С.А. и др., 2013; Мокроусов И.С., 2014), антигипоксическими свойствами, способностью ограничивать процессы ПОЛ и повышать активность антиоксидантных ферментов (Удинцев Н.А. и др., 1984; Калинина Е.В. и др., 2003, 2007; Макарова Л.М. и др., 2013; Максимова Л.Н. и др., 2013).

В связи с вышесказанным нами был проведен целенаправленный скрининг среди 9 новых производных глутаминовой кислоты, который позволил выявить вещества с выраженной кардиопротекторной активностью.

На модели 24-х часового иммобилизационно-болевого стрессирования с проба использованием функциональных проб: на адренореактивность, изометрическая нагрузка, было выявлено снижение функциональных резервов сердца у стрессированных животных контрольной группы, что проявлялось более скоростей сокращения расслабления низким приростом И миокарда, левожелудочкового давления, частоты сердечных сокращений на 20-й секунде стимуляции адренорецепторов сердца относительно исходных параметров по

сравнению с группой интактных животных. При изометрической нагрузке прирост скорости сокращения и расслабления миокарда, левожелудочкового давления и максимальной интенсивности функционирования структур также более существенно снижался к 30 секунде пережатия восходящей части дуги аорты относительно исхода по сравнению с интактными животными. Таким образом, 24-х часовое иммобилизационно-болевое стрессирование в значительной степени снижало ино- и хронотропные резервы сердца, что вероятно, может быть связано с гиперактивацией симпатической системы при стрессе, увеличением ЧСС, сужением периферических сосудов, т.е. увеличением постнагрузки, что ведет к повышению потребления миокардом кислорода, а также индукцией процессов перекисного окисления липидов из-за избытка катехоламинов с последующим развитием ишемии, контрактуры миокарда и нарушением сократительной насосной функции сердца (Sawai A. et al., 2007; Lee Y.P. et al., 2008; Chen F. et al., 2009; Tousoulis D. et al., 2012).

В результате проведенного скрининга кардиопротекторный эффект при проведении нагрузочных проб был выявлен у – соединения РГПУ-135. Модификация его замещением двух гидроксильных групп метильными образованием 3радикалами диметилового эфира гидрохлорида фенилглутаминовой кислоты – соединение РГПУ-238 привела к усилению кардиопротекторного действия. Добавление этильных групп к гидрохлориду 3фенилглутаминовой кислоты с образованием диэтилового эфира (соединение РГПУ-239) не вызывало увеличения специфической активности, стрессированных животных наблюдалось повышение функциональных резервов сердца в условиях нагрузочных проб, однако, данный эффект был менее выражен по сравнению с соединением РГПУ-135. Присоединение хлора к фенильному диметилового эфира гидрохлорида 3-фенилглутаминовой кислоты (соединение РГПУ-240), так же как и введение в бензольное кольцо атома азота (соединение РГПУ-241), не приводило к увеличению кардиопротекторной активности.

При скрининге кардиопротекторным действием веществ c среди композиций 3-фенилглутамата с органическими кислотами выявлено, что наиболее выраженной активностью обладают композиции лимонной (соединение РГПУ-222) и янтарной (соединение РГПУ-223) кислотами, но по силе исследуемого эффекта они уступали соединению РГПУ-238. Композиции 3фенилглутаминовой кислоты с яблочной (соединение РГПУ-233) и салициловой (соединение РГПУ-234) практически не влияли на функциональные резервы сердца, при проведении нагрузочных проб наблюдался слабый прирост скоростей сокращения и расслабления миокарда, а также ЛЖД и МИФС, т.е. не защищали миокард от повредждения стрессорным воздействием.

Таким образом, в результате проведенного поиска наиболее активным оказалось соединение РГПУ-238. Вероятно, специфическая активность нового производного глутаминовой кислоты обусловлена наличием в его химической структуре тормозных нейромедиаторов ГАМК и глицина. Можно предположить, что они активируют ГАМК-ергическую систему и вызывают усиление тормозных процессов, что способствует ограничению имеющего место при стрессорном воздействии чрезмерного возбуждения гипоталамо-гипофизарно-адреналовой системы, нарушения метаболизма, структуры и функционирования кардиомиоцитов, снижения ино- и хронотропных резервов сердца.

При изучении зависимости «доза-эффект» соединения РГПУ-238 на животных, подвергшихся иммобилизационно-болевому стрессированию, выявлено, что наибольший прирост скоростей сокращения и расслабления миокарда, ЛЖД, ЧСС и МИФС по отношению к исходу в условиях проведения нагрузочных проб наблюдается при введении исследуемого вещества в дозе 28,7 мг/кг. При дальнейшем повышении дозы увеличения эффекта не наблюдалось, поэтому она была выбрана для дальнейшего исследования.

При блокаде NO-синтаз неселективным ингибитором L-NAME у животных, подвергшихся 24-часовому иммобилизационно-болевому стрессированию, прирост показателей кардиодинамики при проведении пробы на

адренореактивность и увеличении постнагрузки был значительно ниже, чем у стрессированных животных контрольной группы. Отмечено уменьшение стрессоустойчивости, о чем свидетельствует высокий процент гибели их при стрессировании, во время наркотизации, при торакотомии и после проведения функциональных проб. Возможно, причиной этого является снижение активности стресс-лимитирующей NO-ергической системы в связи с недостаточной выработкой оксида азота, что приводит к неконтролируемому высвобождению гормонов стресса в ЦНС и на периферии, вызывает активацию процессов негативного действия на миокард и существенные функциональные нарушения. При ингибировании NO-синтаз вероятно снижается активность и еще одной стресс-лимитирующей системы - ГАМК-ергической. Из литературных данных известно, что обе эти системы - NO- и ГАМК-ергическая - функционируют в тесной взаимосвязи (Li Y. et al., 2003; Liu C.N. et al., 2005; McBryde F.D. et al., 2011; Kamran M. et al., 2013; Sagi Y. et al., 2014; Gasulla J. et al., 2015).

В условиях блокады индуцибельной NO-синтазы аминогуанидином в дозе 50 мг/кг у стрессированных животных в ответ на введение адреналина прирост ЛЖД, скоростей сокращения и расслабления миокарда относительно исходных значений был выше, а ЧСС ниже, чем в группе животных, получавших физиологический раствор. При проведении изометрической нагрузки также отмечен более высокий прирост ЛЖД и МИФС на 5 и 30 секунде окклюзии восходящей части дуги аорты, по сравнению с животными контрольной группы, иммобилизационно-болевому стрессу, прирост подвергшимся сократимости практически не отличался в обеих группах. Согласно литературным данным, в условиях стрессорного воздействия iNOS активируется при стрессе и продуцирует большое количество оксида азота, что оказывает негативный инотропный эффект, способствует увеличению выработки оксида азота в миокарде в сотни раз. Высокий уровень оксида азота потенцирует образование пероксинитрита реакционноспособного соединения, обладающего прооксидантным действием и приводящего к повреждению клеток сердца

(Olivenza R. et al., 2000; Villanueva C. et al., 2010) и кардиодепрессии (Сосунов А.А., 2000; Парахонский А.П., 2010; Muller-Strahl G. et al., 2000; Gealekman O. et 2002). Возможно, ЧТО полученные данные обусловлены гиперпродукции оксида азота вследствие ингибирования данной изоформы NOконститутивные NOS обеспечивают его базальные синтазы, уровни, противострессорное действие и улучшающие оказывающие сократимость миокарда.

стрессированным животным селективного введении блокатора нейрональной NO-синтазы 7-нитроиндазола в дозе 50 мг/кг, прирост показателей сократимости миокарда, ЛЖД и ЧСС на 20 секунде проведения пробы на адренореактивность был ниже значений контрольной группы животных, получавших физиологический раствор. На 5 секунде окклюзии восходящей части дуги аорты показатели сократимости миокарда практически не отличались от таковых контрольной группы. К 30 секунде проведения нагрузки было выявлено расслабления снижение прироста скоростей сокращения миокарда, относительно показателей стрессированных животных, прирост ЛЖД и МИФС совпадал с таковым группы контроля. Имеющиеся литературные данные показывают, что nNO-синтаза продуцирует оксид азота, стимулирующий перемещение кальция в саркоплазматическом ретикулуме кардиомиоцитов, регулирует процессы сопряжения возбуждения и сокращения, тем самым увеличивая сократимость миокарда (Парахонский А.П., 2010; Alvarez S. et al., 2004). В связи с вышесказанным, можно предположить, что полученный результат связан с дефицитом оксида азота, возникающим при ингибировании nNOS, который приводит к нарушению сократимости миокарда и, как следствие, снижению инотропной функции сердца. В то же время гиперпродукция NO индуцибельной NOS способствует образованию пероксинитрита и развитию оксидативного стресса, который повреждает мембраны, митохондрии и другие структуры кардиомиоцитов и вызывает снижение функциональных резервов сердца.

Новое производное глутаминовой кислоты - соединение РГПУ-238 — способно ограничивать повреждающее действие стресса на сердце при блокаде NO-системы, на что указывал более выраженный прирост скоростей сокращения и расслабления миокарда, ЛЖД и ЧСС при введении адреналина и окклюзии восходящей части дуги аорты, чем у стрессированных животных в условиях ингибирования NO-синтаз. Исследуемое соединение повышает стрессоустойчивость животных, на что указывает отсутствие случаев гибели стрессированных крыс, получавших L-NAME. Препарат сравнения фенибут значительно уступает по эффективности исследуемому соединению.

При изучении влияния исследуемого соединения на функциональные резервы сердца крыс, подвергшихся 24-часовому стрессорному воздействию в условиях блокады индуцибельной NO-синтазы аминогуанидином, было выявлено достоверное повышение прироста ЛЖД, скорости сокращения и расслабления миокарда, по сравнению с таковым животных контрольной группы в ответ на введение адреналина. При проведении максимальной изометрической нагрузки достоверных различий со стрессированными самками, получавшими аминогуанидин, обнаружено не было.

У стрессированных животных, которым вводили соединение РГПУ-238 и селективный блокатор нейрональной NO-синтазы - 7-нитроиндазол, было выявлено достоверное увеличение прироста показателей сократимости и ЛЖД по сравнению с показателями соответствующей контрольной группы крыс при проведении пробы на адренореактивность. На 5 и 30 секундах окклюзии восходящей части дуги аорты было обнаружено значительное повышение прироста скоростей сокращения и расслабления миокарда по сравнению таковыми контрольной группы. Возможно, соединение РГПУ-238 является лигандом глутаматных рецепторов NMDA-типа, связанных с кальциевыми каналами, активация которых приводит к стимуляции синтеза оксида азота конститутивными кальцийзависимыми NOS и ограничению центрального и периферического звеньев стресс-реакции.

При введении стрессированным животным блокатора ГАМК_А-рецепторов бикукулина - наблюдалось более выраженное снижение инотропной функции миокарда, чем у крыс контрольной группы, на что указывает меньший прирост +dP/dt max, -dP/dt max, ЛЖД, ЧСС и МИФС при стимуляции адренорецепторов сердца и максимальной изометрической нагрузке. Очевидно, блокада ГАМК_Арецепторов вызывает снижение активности ГАМК-ергической системы в ограничении повреждающего действия стресса на сердце, что согласуется с литературными данными (Меерсон Ф.З. и др., 1989). Введение соединения РГПУ-238 вызывало достоверное увеличение прироста скорости сокращения и расслабления миокарда и ЛЖД при проведении пробы на адренореактивность по с показателями контрольной группы животных. проведения максимальной изометрической нагрузки в группе самок, получавших бикукулин, наблюдалось значительное повышение прироста МИФС на 5 и 30 секунде пережатия восходящей части дуги аорты, по сравнению с таковым контрольной группы животных. В группе стрессированных крыс, которым вводили блокатор ГАМК_A-рецепторов и соединение РГПУ-238, прирост +dP/dt, dP/dt и ЛЖД на 30 секунде проведения нагрузки достоверно превосходил таковой у контрольной группы. Полученные данные позволяют предположить, что исследуемое соединение функционально взаимодействует с NO-ергической системой и в условиях блокады ГАМК-ергической ограничение стрессорного повреждения сердца реализуется через систему оксида азота.

Обнаружено зависимое от возраста снижение инотропной функции сердца у что доказывает статистически значимая интактных животных, показателей у 24-х месячных самок по сравнению с крысами в возрасте 6-ти и 12ти месяцев при проведении нагрузочных тестов, что согласуется с литературными Установлено, возрастом данными. что людей развиваются морфофункциональные изменения в миокарде, происходит нарушение обменных процессов и нейрогуморальной регуляции сердца и это приводит к снижению его функциональных резервов (Hua Y. et al., 2011; Khan M. et al., 2012). При старении уменьшается количество кардиомиоцитов, нарастает содержание медленных миозина, развивается очаговая дистрофия мышечных волокон, фиброз, a нарушается обмен миокардиальный также кальция между саркоплазматическим ретикулумом митохондриями, И развивается окислительный стресс (Turdi S. et al., 2010; Strait J.B. et al., 2012; Kwak H.B., 2013; Zhang Y. et al., 2014).

В результате проведения 24-х часового иммобилизационно-болевого стрессирования в группах животных в возрасте 6, 12 и 24 месяцев, был выявлен меньший прирост скоростей сокращения и расслабления миокарда, ЛЖД, МИФС и ЧСС в ответ на нагрузки по сравнению с таковыми интактных крыс. В группах 12 и 24-х месячных животных наблюдалось более низкое исходное ЛЖД и урежение ЧСС по сравнению с 6-ти месячными, что возможно связано с возраст-зависимым снижением эластических свойств артерий и тонуса вен, нарушением симпатического контроля сердечного ритма, и как следствие, уменьшением частоты сердечных сокращений и фракции выброса (Stratton J.R. et al., 2003).

У 24-х месячных стрессированных животных контрольной группы увеличение показателей сократимости миокарда, ЛЖД, МИФС и ЧСС в ответ на проведение нагрузочных проб было существенно ниже, чем у крыс 6-ти и 12-ти месячного возрастов. Полученные нами результаты совпадают с литературными данными, в которых показано ограничение диапазона компенсаторных реакций у людей пожилого и старческого возраста при возникновении стрессовых ситуаций, в связи с чем сердечная недостаточность развивается раньше и быстро прогрессирует (Коркушко О.В. и др., 2012).

В группах стрессированных животных всех возрастов, получавших соединение РГПУ-238, при проведении нагрузочных проб были получены более высокие показатели по сравнению с таковыми крыс контрольных групп. При этом наиболее выраженный прирост скоростей сокращения и расслабления миокарда, ЛЖД и МИФС отмечается у 24-х месячных животных по сравнению с 6-ти и 12-ти месячными. Препарат сравнения фенибут также увеличивает прирост

показателей, в большей степени у 24-х месячных животных.

В условиях длительного стрессорного воздействия у животных в возрасте 12 и 24 месяцев также было обнаружено истощение функциональных резервов сердца, что проявлялось более низким приростом показателей сократимости миокарда, ЛЖД, ЧСС и МИФС при проведении нагрузочных проб по сравнению с таковыми группы интактных животных. Возможно, полученные результаты обусловлены ослаблением действия стресслимитирующих систем у стареющих животных в связи с развитием дистрофических изменений, на что указывает (поврежденных) увеличение количества гиперхромных клеток, выпадений нейроцитов в пирамидном слое САЗ зоны вентрального гиппокампа, что может свидетельствовать о развивающейся при хроническом стрессировании гиппокампальной дисфункции и нарушением процесса нормального нейрогенеза. В совокупности, все вышеперечисленное приводит к повышению уязвимости организма старых крыс к действию стрессорного агента и усугублению повреждающего эффекта.

Новое производное глутаминовой кислоты способно ограничивать стрессорное нарушение сократительной функции миокарда, чем выраженный прирост исследуемых показателей у свидетельствует более животных обеих возрастных групп, получавших препарат, по сравнению с таковыми самцов контрольной группы в ответ на проведение функциональных тестов. Наиболее высокий прирост скоростей сокращения и расслабления миокарда, ЛЖД, ЧСС и МИФС наблюдался в группе животных 24-х месячного возраста, что совпадает с результатами исследования на модели острого стрессирования. Препарат сравнения фенибут также повышал функциональные резервы сердца во всех исследуемых группах животных в ответ на проведение нагрузочных проб, однако, соединение РГПУ-238 превосходило его по силе кардиопротекторного действия. Поскольку соединение РГПУ-238 является обладающей глутаминовой кислоты, антигипоксическим производным антиоксидантным действием (Удинцев Н.А. и др., 1984), можно предположить,

что именно благодаря этим свойствам исследуемое вещество способно повышать функциональные резервы стареющего сердца в условиях острого стресса.

Кроме этого, зависимое от возраста увеличение кардиопротекторного обусловлено действия РГПУ-238 быть соединения может состоянием микросомальной системы печени и сниженной активностью цитохрома Р450, что длительному способствует более поддержанию высоких концентраций соединения в тканях (Арутюнян A.B. и др., 2009; Agrawal A.K. et al., 2003).

Как было сказано выше, стрессорное воздействие вызывает повреждение кардиомиоцитов, опосредованное множеством взаимозависимых факторов, среди позицию занимают процессы свободнорадикального которых ключевую окисления (Меерсон Ф.З. и др., 1988; Fulda S. et al., 2010; Devaki M. et al., 2013; Wang C.H. et al., 2013) представлялось целесообразным изучение влияния нового кислоты процессы ПОЛ глутаминовой на активность антиоксидантных ферментов. В группе животных, подвергшихся 24-х часовому было выявлено повышенное образование стрессированию, первичных вторичных продуктов ПОЛ - диеновых коньюгатов, дикетонов и МДА, а также снижение активности СОД, ГП и каталазы в митохондриях сердца по сравнению с таковыми группы интактных животных. Соединение РГПУ-238 и препарат фенибут ограничивают процессы ПОЛ, снижая концентрацию сравнения диеновых коньюгатов, дикетонов и МДА по сравнению с показателями группы стрессированных животных. При этом повышается активность антиоксидантных ферментов - СОД, ГП и каталазы. Возможно, это связано со способностью исследуемого соединения ограничивать стресс-реакцию, выброс катехоламинов, активацию процессов ПОЛ и их повреждающее действие на кардиомиоциты.

Интенсификация ПОЛ при стрессорном воздействии вызывает повреждение клеточных мембран, что подтверждается снижением кислотной и осмотической резистентности эритроцитов в группах стрессированных животных по сравнению с интактными. Соединение РГПУ-238 и препарат сравнения фенибут вызывают

повышение устойчивости мембран эритроцитов к действию повреждающих агентов, что свидетельствует о наличии у них мембранопротекторных свойств. Можно предположить, что мембранопротекторное действие исследуемого соединения обусловлено способностью ограничивать процессы ПОЛ и активировать антиоксидантные ферменты.

Развивающийся при стрессе оксидативный стресс может способствовать нарушению функции эндотелия сосудов (Higashi Y. et al., 2009). Эндотелиальная дисфункция приводит к вазоконстрикции, усилению агрегации тромбоцитов, синтезу и секреции веществ, обладающих прокоагулянтными свойствами (Verhamme P. et al., 2006; Rajendran P. et al., 2013). Нами было выявлено ослабление реакции сосудов на введение ацетилхолина и нитро-L-аргинина у животных после длительного стрессирования по сравнению с показателями крыс интактной группы. Соединение РГПУ-238 ограничивало нарушение функции эндотелия при хроническом стрессорном воздействии, что проявилось увеличением МК в ответ на введение АЦХ и снижением при введении нитро-Lаргинина. В группе стрессированных животных, получавших фенибут, достоверных различий с показателями, полученными в контрольной группе, отмечено не было.

Хроническое стрессирование крыс вызывало выраженные сдвиги в системе гемостаза в сторону гиперкоагуляции и гиперагрегации в плазменно-коагуляционном и сосудисто-тромбоцитарном звеньях гемостаза. Соединение РГПУ-238 и фенибут ограничивали эти процессы, что проявляется удлинением АЧТВ, ТВ, ПВ, снижением концентрации фибриногена, степени и скорости агрегации тромбоцитов по сравнению с показателями контрольной группы стрессированных животных. В связи с вышесказанным, можно предположить наличие у исследуемого соединения эндотелиопротекторного действия.

Было выявлено достоверное увеличение продолжительности жизни в условиях нормобарической гипоксии с гиперкапнией у мышей, получавших соединение РГПУ-238 и препарат сравнения фенибут, относительно контрольной

группы стрессированных животных, что свидетельствует о наличии у соединений антигипоксических свойств.

Таким образом, кардиопротекторное действие нового производного глутаминовой кислоты обусловлено в первую очередь противострессорным эффектом. Ограничение симпатических влияний на сердце обусловливает ограничение окислительного стресса, улучшение вазодилатирующей и антиагрегантной функции эндотелия.

ВЫВОДЫ

- 1. Среди новых производных глутаминовой кислоты выявлено соединение РГПУ-238 (диметиловый эфир гидрохлорида 3-фенилглутаминовой кислоты), обладающее наиболее выраженным кардиопротекторным действием в условиях 24-х часового стрессорного воздействия.
- 2. Анализ зависимости специфической активности исследуемых веществ от химической структуры показывает, что кардиопротекторный эффект базового соединения гидрохлорида 3-фенилглутаминовой кислоты (РГПУ-135) максимально усиливается при замещении водорода в карбоксильных группах метильными радикалами (соединение РГПУ-238). Модификация фенильного кольца атомами хлора (соединение РГПУ-240) и азота (соединение РГПУ-241), а также композиции 3-фенилглутаминовой кислоты с органическими кислотами (лимонной, яблочной, янтарной, салициловой) не приводит к усилению кардиопротекторного эффекта гидрохлорида 3-фенилглутаминовой кислоты.
- 3. Проведенный анализ зависимости «доза-эффект» выявил, что у животных, подвергшихся стрессорному воздействию, наиболее высокие показатели сократимости миокарда в условиях нагрузочных проб наблюдаются при введении соединения РГПУ-238 в дозе 28,7 мг/кг. Острая суточная токсичность при внутрибрющинном введении составила 1619,8 (1339,0-1959,5) мг/кг, терапевтический индекс равнялся 56,4.
- **4.** Неизбирательное и селективное ингибирование NOS, а также ГАМК_А-рецепторов до стрессорного воздействия приводит к усугублению нарушения сократимости миокарда. Соединение РГПУ-238 модулирует активность NO- и ГАМК-ергической стресс-лимитирующих систем, способствует уменьшению негативного действия стресса на миокард, о чем свидетельствуют более высокие функциональные резервы сердца в условиях проведения нагрузочных тестов.
- 5. Острое и хроническое стрессорное воздействие вызывает снижение

инотропных резервов сердца у 6-ти, 12-ти и 24-х месячных крыс. Соединение РГПУ-238 улучшает ино- и хронотропную функции сердца стрессированных животных всех возрастов, но наиболее выражено у 24-х месячных, на что указывает повышение прироста скорости сокращения миокарда при проведении нагрузочных проб в среднем в 2,4, скорости расслабления - в 2,2, ЛЖД - в 2,1, МИФС - в 2,0 раза относительно данных, полученных у крыс контрольной группы.

- 6. Длительное стрессорное воздействие приводит нарушению антитромботической вазодилатирующей И функции эндотелия. стрессированных крыс, получавших в течение 7 дней соединение РГПУ-238, более высоком уровне сохранялась эндотелийзависимая вазодилатация в ответ на введение АЦХ и снижение реакции на нитро-Lсравнению с показателями стрессированных контрольной группы, регистрировалось удлинение АЧТВ в 1,5, ТВ и ПВ - в 1,3, снижение концентрации фибриногена - в 1,3, а также степени и скорости агрегации тромбоцитов - в 1,4 и 1,6 раза.
- 7. Соединение РГПУ-238 способствует снижению количества ДК, МДА, кетодиенов в среднем в 1,2 раза и повышению активности антиоксидантных ферментов СОД, каталазы и ГП в среднем в 1,25 раза по сравнению с показателями стрессированных крыс контрольной группы. Исследуемое вещество оказывает мембранопротекторное и антигипоксическое действие, на что указывает снижение в среднем в 1,6 раза степени кислотного и осмотического гемолиза эритроцитов и увеличение продолжительности жизни мышей в условиях нормобарической гипоксии с гиперкапнией в 1,2 раза по сравнению с показателями животных контрольной группы.

НАУЧНО-ПРАКТИЧЕСКИЕ РЕКОМЕНДАЦИИ

- РГПУ-238 1. Выявленная способность соединения ограничивать негативное влияние острого и хронического стресса на миокард у возрастных животных разных групп свидетельствует перспективности дальнейшей разработки на его основе для лекарственного препарата предупреждения стрессорных повреждений миокарда.
- 2. Целесообразно продолжить синтез и дальнейший поиск среди новых производных глутаминовой кислоты для последующей разработки высокоактивных и малотоксичных веществ со стресс- и кардиопротекторной активностью.

СПИСОК СОКРАЩЕНИЙ

А – адреналин

АВ - аргинин-вазопрессин

АКТГ - адренокортикотропный гормон

АТФ - аденозинтрифосфат

АФК - активные формы кислорода

АЧТВ – активированное частичное тромбопластиновой время

В/бр - внутрибрюшинно

ГАМК - гамма-аминомасляная кислота

ГК – глутаминовая кислота

ГОМК - гамма-оксимасляная кислота

ГП – глутатионпероксидаза

ДК – диеновые коньюгаты

ДМСО - диметилсульфоксид

КРГ - кортикотропин-рилизинг-гормон

КХ – катехоламины

ЛД₅₀ – среднелетальная доза

ЛЖД - левожелудочковое давление

МДА - малоновый диальдегид

МИФС - максимальная интенсивность функционирования структур

НА - норадреналин

ПВ – протромбиновое время

ПОЛ - перекисное окисление липидов

РААС –ренин-ангиотензин-альдостероновая система

СОД — супероксиддисмутаза

СРО – свободно-радикальное окисление

ССЗ – сердечно-сосудистые заболевания

ССС – сердечно-сосудистая система

СТГ – соматотропный гормон

ТБК – тиобарбитуровая кислота

ТВ – тромбиновое время

ТИ – терапевтический индекс

ТТГ – тиреотропный гормон

ТХУК – трихлоруксусная кислота

Физ. p-p – физиологический раствор

ЦНС - центральная нервная система

ЧСС - частота сердечных сокращений

+dP/dt max - скорость сокращения миокарда (первая производная левожелудочкового давления)

-dP/dt max - скорость расслабления миокарда (вторая производная левожелудочкового давления)

eNOS – эндотелиальная NO-синтаза

IL – интерлейкин

iNOS – индуцибельная NO-синтаза

L-NAME – N-нитро-L-аргинин метиловый эфир

NK-рецепторы – нейрокининовые рецепторы

nNOS – нейрональная NO-синтаза

NO - оксид азота

NOS – NO-синтаза

NРY – нейропептид Y

СПИСОК ЛИТЕРАТУРЫ

- Акопян, В.П. Участие системы ГАМК в адаптационной перестройке мозгового кровообращения в условиях гипокинезии / В.П. Акопян // Экспериментальная и клиническая фармакология. 2003. Т.66, № 3. С. 4-8.
- Андреева, Л.А. Дисрегуляция NO/cGMP/cADPr/Ca2+-сигнального пути в сосудах и миокарде спонтанно гипертензивных крыс / Л.А. Андреева, О.В. Накипова, А.И. Сергеев и др. // Фундаментальные исследования. 2013. №6. С. 1397-1401.
- 3. Апчел, В.Я. Стресс и стрессоустойчивость человека / В.Я. Апчел, В.Н. Цыган. СПб.: Военно-медицинская академия, 1999. 86 с.
- 4. Арутюнов, Г.П. Стресс и атеросклероз: позиция кардиолога / Г.П. Арутюнов //Пленум» (приложение к журналу «Серце»). 2006. Т. 2, № 2. С. 4-7.
- Арутюнян, А.В., Козина Л.С. Механизмы свободнорадикального окисления и его роль в старении / А.В. Арутюнян, Л.С. Козина // Успехи геронтологии.
 2009. Т. 22, № 1. С. 104-116.
- 6. Багметова, В.В. Изучение нейропсихофармакологических эффектов нового производного глутаминовой кислоты соединения РГПУ-197 / В.В. Багметова, М.Н. Багметов, И.Н. Тюренков и др. // Обзоры по клинической фармакологии и лекарственной терапии. 2012. № 1. С. 54-59.
- 7. Багметова, B.B. Сравнительная оценка свойств антидепрессивных гидрохлорида β-фенилглутаминовой кислоты (РГПУ-135, глутарон) / В.В. Багметова, Ю.В. O.B. // Чернышева, Меркушенкова И др. Экспериментальная и клиническая фармакология. - 2013. - Т. 76, № 3. - С. 7-9.
- 8. Багметова, В.В. Сравнительное изучение влияния глутаминовой кислоты и гидрохлорида бета-фенилглутаминовой кислоты (РГПУ-135, нейроглутама) на физическую работоспособность животных / В.В. Багметова, Ю.В. Чернышева // Фундаментальные исследования. 2013. № 9. С. 319-322.

- 9. Беленков, Ю.Н. Распространенность хронической сердечной недостаточности в Европейской части Российской Федерации данные ЭПОХА-ХСН (часть 2) / Ю. Н. Беленков, И. В. Фомин, В.Ю. Мареев и др. // Сердечная Недостаточность. 2006. № 3. С. 3-7.
- 10. Беленький, М.Л. Элементы количественной оценки фармакологического эффекта. Л.: Медгиз, 1963. 152 с.
- Беликова, М.В. Изменения содержания катехоламинов, показателей ПОЛ и антиоксидантной системы в плазме крови при старении / М.В. Беликова, Я.В. Зиневич, А.В. Луценко и др.// Мир Медицины и Биологии. 2014. Т. 46, № 4. С. 022-025.
- 12. Берестовицкая, В.М. Производные глутаминовой кислоты: способы получения и биологическая активность / В.М. Берестовицкая, О.С. Васильева, Е.С. Остроглядов и др. // Известия РГПУ им. А.И. Герцена; естественные и точные науки. 2004. Т. 8, № 4. С. 158-176.
- 13. Блинов, Д.С. Исследование кардиопротекторного действия деанола ацеглумата в условиях экспериментального нарушения мозгового кровообращения / Д.С. Блинов, Е.В. Блинова, Л.В. Пивкина и др. // Вестник новых медицинских технологий. 2012. Т. 19, № 2. С. 32-34.
- 14. Блинов, Д.С. Исследование противоаритмической активности третичного производного лидокаина / Д.С. Блинов, Я.В. Костин // Росс. кард. Журнал. 2003. № 6. С. 56-58.
- 15. Блинова, Е.В. Исследование антиишемической активности препаратов антиоксидантного типа действия при сахарном диабете в эксперименте / Е.В. Блинова, Р.К. Байчурин, Н.М. Филатова и др. // Материалы научной конференции «XL Огаревские чтения» Мед. ин-та Мордов. гос. ун-та. Вып. 15. Саранск, 2011. С. 23-26.
- Бугаева, Л.И. Острая токсичность субстанции гидрохлорида β– фенилглутаминовой кислоты при однократном внутрижелудочном введении мышам и крысам / Л.И. Бугаева, И.Н. Тюренков, В.В. Багметова и др. //

- Вестник Волгоградского государственного медицинского университета. 2012. Т. 44, № 4. С. 34-38.
- Вислобоков, А.И. Изменения внутриклеточных потенциалов нейронов моллюска под влиянием гидрохлорида бета-фенилглутаминовой кислоты / А.И. Вислобоков, Ю.Д. Игнатов, В.В. Багметова и др. // Бюллетень экспериментальной биологии и медицины. 2013. № 12. С. 672-676.
- 18. Волошин, Л.В., Малахов В.А., Завгородняя А.Н. Эндотелиальная дисфункция при цереброваскулярной патологии. Харьков, 2006. 92 с.
- 19. Воронина, Т.А. Методические указания по изучению ноотропной активности фармакологических веществ / Т.А. Воронина, Р.У. Островская // Руководство по экспериментальному (доклиническому) изучению новых фармакологических веществ. М.: ИИА «Ремедиум», 2000. С. 153-161.
- Габбасов, З.А. Новый высокочувствительный метод анализа агрегации тромбоцитов / З.А. Габбасов, Е.Г. Попов, И.Ю. Гаврилов и др. // Лабораторное дело. 1989. № 10. 18 с.
- 21. Гаевый, М.Д. Ишемия головного мозга, вызванная гравитационной перегрузкой / М.Д. Гаевый, Л.М. Аджиенко, Л.М. Макарова и др. // Экспериментальная и клиническая фармакология. 2000. Т.63, №3. С. 63-64.
- 22. Гогина, Е.Д. Фармакологическое действие деанола ацеглумата при ишемическом повреждении миокарда / Е.Д. Гогина, Д.С. Блинов, Н.М. Филатова и др. // Вестник новых медицинских технологий. 2012. Т. 19, №1. С. 73-75.
- 23. Городецкая, И.В. Зависимость устойчивости организма к хроническому стрессу от тиреоидного статуса / И.В. Городецкая, Н.А. Кореневская // Российский физиологический журнал. 2011. № 12. С. 1346-1354.
- 24. Гречко, О.Ю. Кардиоваскулярные свойства новых производных фенибута и карфедона: дис. ... канд. мед. наук: 14.00.25 / Гречко Олеся Юрьевна. Волгоград, 2000. 150 с.

- Гуревич, М.А. Особенности лечения хронической сердечной недостаточности у больных пожилого и старческого возраста / М.А. Гуревич // Российский кардиологический журнал. 2008. № 4. С. 77-81.
- 26. Гурова, Н.А. Кардиопротекторные свойства зонипорида на модели ишемического и реперфузионного повреждения миокарда у крыс / Н.А. Гурова, А.А. Спасов, А.С. Тимофеева и др. // Экспериментальная и клиническая фармакология. 2013. Т. 76, № 8. С. 17-19.
- 27. Долгов, В.В. Лабораторная диагностика нарушений гемостаза / В.В. Долгов, П.В. Свирин. М.: Триада, 2005. 227 с.
- 28. Ершов, И.Н. Исследование эндотелио- и кардиопротективного эффекта пикамилона и депакина энтерика: автореф. дис. ... канд. мед. наук. Курск. 2009. 23c.
- 29. Закирова, А.Н. Роль перекисного окисления липидов, антиоксидантной защиты и реологических нарушений в развитии ишемической болезни сердца / А.Н. Закирова, Н.Э. Закирова // Росс. кардиологич. журн. 2006. №2. С. 24-28.
- 30. Заславская, Р.М. Оценка эффективности метаболитной терапии комплексом аминокислот у больных ишемической болезнью сердца пожилого возраста / Р.М. Заславская, И.А. Комиссарова, Е.В. Калинина и др. // Клиническая Медицина. 1999. № 77. С. 46-49.
- 31. Игнатов, Ю.Д. Новое производное глутаминовой кислоты РГПУ-135 (глутарон, нейроглутамин) модулирует ионные токи нейронов моллюсков / Ю.Д. Игнатов, А.И. Вислобоков, И.Н. Тюренков и др. // Экспериментальная и клиническая фармакология. 2012. № 12. С. 3-6.
- 32. Измеров, Н.Ф., Саноцкий И.В., Сидоров К.К. Параметры токсикометрии промышленных ядов при однократном воздействии / Н.Ф. Измеров, И.В. Саноцкий, К.К. Сидоров. Справочник. М., 1977.
- 33. Калинина, Е.В. Антиоксидантный эффект Элтацина в терапии больных ИБС пожилого возраста: сборник научно-практических работ сотрудников

- городской клинической больницы № 60 / Е.В. Калинина, Р.М. Заславская. М.: Оверлей, 2007. С. 118-120.
- 34. Калинина, Е.В. Влияние метаболитного препарата Элтацин на оксидантный уровень больных ИБС пожилого возраста / Е.В. Калинина, И.А. Комиссарова, Р.М. Заславская и др. // Клиническая Геронтология. 2003. Т.9, №9. 9 с.
- 35. Калинченко, С.Ю. Окислительный стресс как причина системного старения. Роль препаратов α-липоевой кислоты (Эспа-Липон) в лечении и профилактике возраст-ассоциированных заболеваний / С.Ю. Калинченко, Л.О. Ворслов, И.А. Тюзиков и др. // Фарматека. 2014. №6. С. 43-54.
- 36. Кацнельсон, Л.Б. Механизмы нарушений электромеханической функции кардиомиоцитов при перегрузке кальцием. Теоретическое исследование / Л.Б. Кацнельсон, Т.Б. Сульман, О.Э. Соловьева и др. // Рос. физиол. журн. им. И.М. Сеченова. 2007. Т. 93, № 9. С. 969-981.
- 37. Киселева, Н.М. Возможная роль тимуса в работе стресс-лимитирующей системы / Н.М. Киселева, А.Н. Иноземцев // Иммунопатология, аллергология, инфектология. 2010. № 3. С. 13-20.
- 38. Ковалев, Г.В. Экспериментальное изучение действия фенибута на функциональную устойчивость мозгового кровообращения / Г.В. Ковалев, И.Н. Тюренков, А.Ф. Косицына и др. // Вопросы регуляции мозгового кровообращения: Тез. докл. конф. Кишинев: Штиница, 1983. С. 87-89.
- 39. Ковалева, М.В. Кардиопротекторное действие ингибиторов ангиотензинпревращающего фермента при генетически обусловленной артериальной гипертензии / М.В. Ковалева // Вестник Витебского государственного медицинского университета. 2011. Т. 10, № 4. С. 160-167.
- 40. Коркушко, О.В. Особенности влияния стимуляции и блокады бетаадренорецепторов на сердечно-сосудистую систему в пожилом и старческом возрасте / О.В. Коркушко, В.Б. Шатило, Г.З. Мороз и др. // Физиология человека. 1991. № 6. С. 42-50.

- 41. Коркушко, О.В. Резервные возможности основных функций сердечнососудистой системы при старении / О.В. Коркушко, Ю.Т. Ярошенко // Проблемы старения и долголетия. - 2012. - № 2. - С. 119-152.
- 42. Королюк, М.А. Метод определения активности каталазы / М.А. Королюк, Л.Н. Иванова, И.Г. Майорова и др. // Лаб. дело. 1988. № 1. С. 16–19.
- 43. Костюк, В.А. Простой и чувствительный метод определения активности супероксиддисмутазы, основанный на реакции окисления кверцетина / В.А. Костюк, А.И. Потапович, Ж.В. Ковалева // Вопр.мед.химии. 1990. Т.36, № 2. С. 88-91.
- 44. Крыжановский, Г.Н. Дизрегуляционная патология: руководство для врачей и биологов. М.: Медицина, 2002. 631 с.
- 45. Крыжановский, Г.Н. Основы общей патофизиологии. М.: МИА, 2011. 256 с.
- 46. Крыжановский, С.А. Влияние ингибитора металлопротеиназ на ранне постинфарктное ремоделирование в острейшую фазу инфаркта миокарда / С.А. Крыжановский, Е.О. Ионова, В.Н. Столярук и др. // Бюллетень экспериментальной биологии и медицины. 2013. Т. 156, № 7. С. 26-32.
- 47. Кукес, В.Г. Кардиомагнил. Новый взгляд на ацетилсалициловую кислоту: пособие для врачей / В.Г. Кукес, О.Д. Остроумова. М., 2004 35 с.
- 48. Куликов, Ю.В. Роль окислительного стресса в регуляции метаболической активности внеклеточного матрикса соединительной ткани (обзор) / Ю.В. Куликов // Медицина и образование в Сибири. 2009. № 4.
- 49. Лейкок, Дж.Ф. Основы эндокринологии / Дж.Ф. Лейкок, П.Г. Вайс. М.: Медицина, 2000. 504 с.
- 50. Лишманов, Ю.Б. Кардиопротекторные, инотропные и антиаритмические свойства комплексного адаптогенного препарата тонизид / Ю.Б. Лишманов, Л.Н. Маслов, А.Г. Арбузов и др. // Экспериментальная и клиническая фармакология. 2008. Т. 71, № 3. С. 15-22.

- 51. Лишневская, В.Ю. Особенности лечения хронической сердечной недостаточности у лиц пожилого возраста / В.Ю. Лишневская // Науковопрактичний загальномедичний журнал. 2010. № 6. С. 87-93.
- 52. Лишневская, В.Ю. Роль дестабилизации внутрисосудистого гомеостаза в активации клеточного апоптоза при старении / В.Ю. Лишневская, Д.В. Ватлицов, К.Н. Игрунова и др. // Тромбоз гемостаз и реология. 2010. № 2. С .50-60.
- 53. Лишневская, В.Ю. Роль свободнорадикального окисления в нарушении гемоваскулярного гомеостаза при старении / В.Ю. Лишневская // Успехи геронтологии. 2004. № 13. С. 52-57.
- 54. Лішневська, В.Ю. Роль апоптозу в розвитку систолічної дисфункції лівого шлуночка у хворих похилого віку, що перенесли інфаркт міокарда / В.Ю. Лішневська, К.М. Ігрунова, Н.М. Коберник // Зб. наук. праць співробітників НМАПО ім. П.Л. Шупика. 2008. № 17. кн. 3. С. 286-292.
- 55. Луньшина, Е.В. Влияние лекарственной композиции, содержащей пироглутаминовую кислоту и пирролидон на мозговое кровообращение / Е.В. Луньшина, Т.С. Ганынина, Р.С. Мирзоян // Экспериментальная и клиническая фармакология. 2002. Т.65, №3. С.3-5.
- 56. Лущак, В.И. Свободнорадикальное окисление белков и его связь с функциональным состоянием организма / В.И. Лущак // Биохимия. 2007. Т. 72, № 8. С. 995-1017.
- 57. Макарова, Л.М. Влияние производного глутаминовой и аповинкаминовой кислот на метаболизм головного мозга в постишемическом периоде / Л.М. Макарова, М.А. Приходько, В.Е. Погорелый и др. // Экспериментальная и клиническая фармакология. 2014. № 2. С. 12-15.
- 58. Макарова, Л.М. Сравнительное изучение противогипоксической активности глутаминовой и N-ацетилглутаминовой кислот / Л.М. Макарова, В.Е. Погорелый // Экспериментальная и клиническая фармакология. 2013. № 2. С. 11-14.

- 59. Максимова, Л.Н. Роль метаболитной терапии в лечении хронической сердечной недостаточности / Л.Н. Максимова, М.Л. Максимов, Я.Р. Нарциссов и др. // Рациональная фармакотерапия в кардиологии. 2013. Т.5, № 9. С. 577-581.
- 60. Малышев, И.Ю. Стресс, адаптация и оксид азота / И.Ю. Малышев, Е.Б. Манухина // Биохимия. 1998. Т. 63, № 7. С. 992-1006.
- Малышев, И.Ю. Стресс-лимитирующая система оксида азота / И.Ю. Малышев, Е.Б. Манухина // Рос. физиол. журн. им. И.М. Сеченова. 2000. №10. С. 1283-1292.
- 62. Мальцев, А.Н. Влияние эмоционально-болевого стресса на сродство крови к кислороду, состояние антиоксидантной системы и физические свойства микросомальных мембран гепатоцитов / А.Н. Мальцев, А.А. Грекова, Е.А. Киц // Биомедицинская химия. 2010. Т.56, № 3. С. 359-371.
- 63. Мандельштам, Ю.Е. Влияние фенильных производных глутаминовой и аспарагиновой кислот на нервно-мышечную передачу саранчи Locusta migratoria / Ю.Е. Мандельштам, Н.А. Анисимова, Т.В. Вовк и др. // Журнал эволюционной биохимии и физиологии. 1991. Т. 27, № 5. С. 621–625.
- 64. Манухина, Е.Б. Катехоламины, оксид азота и устойчивость к стрессорным повреждениям: влияние адаптации к гипоксии / Е.Б. Манухина, И.Ю. Малышев, М.Г. Пшенникова и др. // Российский физиологический журнал им. И.М. Сеченова. 2002. № 4. С. 485-495.
- 65. Манухина, Е.Б. Стресс-лимитирующая система оксида азота / Е.Б. Манухина, И.Ю. Малышев // Российский физиологический журнал им. И.М. Сеченова. 2000. Т. 86, № 10. С. 1283-1292.
- 66. Марков, Х.М. Эндогенные ингибиторы оксида азота и их значение в патологии / Х.М. Марков // Российский педиатрический журнал. 2005. № 6. С. 31-35.
- 67. Маслов, Л.Н. Кардиопротекторные и антиаритмические свойства препаратов Rhodiolae Roseae / Л.Н. Маслов, Ю.Б. Лишманов //

- Экспериментальная и клиническая фармакология. 2007. T. 70, № 5. C. 59-67.
- 68. Маслов, Л.Н. Кардиопротекторные свойства агонистов каннабиноидных рецепторов / Л.Н. Маслов, А.В. Крылатов // Сибирский медицинский журнал. 2012. Т. 27, № 2. С. 9-14.
- 69. Матасова, Л.В. Кардиопротекторные свойства некоторых производных бензокс(ти)азолилгуанидинов / Л.В. Матасова, Д.В. Крыльский, Т.Н. Попова и др. // Вопросы биологической, медицинской и фармацевтической химии. 2008. Т. 6, № 6. С. 56-58.
- 70. Мацко, М.А. Соотношение некоторых медиаторов стрессреализующих и стресслимитирующих систем в остром периоде ишемического инсульта / М.А. Мацко // Патологическая физиология и экспериментальная терапия. 2004. № 4. С. 14-16.
- 71. Меерсон, Ф.З. Адаптация к стрессорным ситуациям и физическим нагрузкам / Ф.З. Меерсон, М.Г. Пшенникова. М.: Медицина, 1988. 256 с.
- 72. Меерсон, Ф.З. Патогенез и предупреждение стрессорных и ишемических повреждении сердца. М.: Медицина, 1984. 272 с.
- 73. Меерсон, Ф.З. Стресс-лимитирующие системы организма и новые принципы профилактической кардиологии / Ф.З. Меерсон, М.Г. Пшенникова. М.: НПО Союзмединформ, 1989. 72 с.
- 74. Меерсон, Ф.З. Феномен адаптационной стабилизации структур и защита сердца / Ф.З. Меерсон, И.Ю. Малышев. М.: Наука, 1993. 158c.
- 75. Меньшикова, Е.Б. Окислительный стресс. Прооксиданты и антиоксиданты / Е.Б. Меньшиков, В.З. Ланкин, Н.К. Зенков и др. М.: «Слово», 2006. 553 с.
- 76. Меньщикова, Е.Б. Окислительный стресс: патологические состояния и заболевания / Н.К. Зенков, В.З. Ланкин и др. Новосибирск: APTA, 2008. 284 с.
- 77. Мирзоян, Р.С. Нейропротекторные и цереброваскулярные эффекты ГАМК-миметиков / Р.С. Мирзоян // Экспериментальная и клиническая фармакология. 2003. Т. 66, № 2. С. 53-56.

- 78. Мирзоян, Р.С. Фармакологический анализ разнонаправленных нейромедиаторных систем регуляции мозгового кровообращения / Р.С. Мирзоян // Медицинская наука Армении. 2005. Т. 45, № 3. С. 35-39.
- 79. Мокроусов, И.С. Кардипротекторный эффект соединения РГПУ-207 в условиях 30-минутной ишемии миокарда и реперфузии / И.С. Мокроусов // Вестник Волгоградского государственного медицинского университета. 2014. Т. 51, № 3. С. 44-46.
- 80. Молодавкин, Г.М. Влияние фенибута на межполушарное взаимодействие мозга крыс / Г.М. Молодавкин, И.Н. Тюренков, Л.Е. Бородкина // Экспериментальная и клиническая фармакология. 2009. № 1. С. 57-9.
- 81. Мороз, Б.Б. Актуальные проблемы патофизиологии: избранные лекции / Под ред. Б.Б. Мороза. М.: Медицина, 2001. 424 с.
- 82. Надольник, Л.И. Стресс и щитовидная железа / Л.И. Надольник // Биомедицинская химия. 2010. Т. 56, № 4. С. 443-456.
- 83. Островская, Р.У. Эволюция проблемы нейропротекции / Р.У. Островская // Экспериментальная и клиническая фармакология. 2003. Т. 66, № 2. С. 32-37.
- 84. Парахонский, А.П. Кардиопротекторные эффекты индуцируемой NO-синтетазы / А.П. Парахонский // Современные наукоемкие технологии. 2010. № 9. С. 207-208.
- 85. Парахонский, А.П. Роль нейрональной NO-синтетазы в патологии сердца / А.П. Парахонский // Современные наукоемкие технологии. 2010. № 9. С. 208-208.
- 86. Перфилова, В.Н. Влияние соединения РГПУ-147 на морфофункциональное состояние миокарда животных после длительного стрессорного воздействия / В.Н. Перфилова, И.Н. Тюренков, А.В. Смирнов // Бюллетень Волгоградского научного центра РАМН. 2010. № 4. С. 45–49.
- 87. Перфилова, В.Н. Влияние феруловой кислоты и фенибута на сократительные свойства миокарда при острой алкогольной интоксикации /

- В.Н. Перфилова, И.Н. Тюренков // Вестник ВолГМУ. 2006. № 2. С. 55-58.
- 88. Перфилова, В.Н. Влияние цитрокарда на функциональные резервы сердца в условиях хронического стрессорного воздействия / В.Н. Перфилова, И.Н. Тюренков, С.А. Лебедева и др. // Бюллетень экспериментальной биологии и медицины. 2007. № 7. С. 24-28.
- 89. Перфилова, В.Н. Кардиопротекторные свойства производных ГАМК в условиях острой алкогольной интоксикации / В.Н. Перфилова, И.Н. Тюренков, В.М. Берестовицкая и др. // Экспериментальная и клиническая фармакология. 2006. Т. 69, № 4. С. 23-27.
- 90. Перфилова, В.Н. Кардиопротекторные свойства структурных аналогов ГАМК: дисс. ... д-ра биол. наук / Перфилова Валентина Николаевна. Волгоград, 2009. 348 с.
- 91. Перфилова, В.Н. Кардиопротекторные свойства структурных аналогов ГАМК: автореф. дис. ... д-ра биол. наук / Перфилова Валентина Николаевна. Волгоград, 2009. 86 с.
- 92. Перфилова, В.Н. Роль ГАМК-ергической системы в ограничении стрессорного повреждения миокарда / В.Н. Перфилова, И.Н. Тюренков // Обзоры по клинической фармакологии и лекарственной терапии. 2005. Т. 4, № 1. С. 21-26.
- 93. Петров, В.И. Современные направления исследований и клинического применения глутаматергических средств / В.И. Петров, Н.В. Онищенко // Экспериментальная и клиническая фармакология. 2002. Т.65, № 4. С. 66-70.
- 94. Преображенский, Д.В. Хроническая сердечная недостаточность у лиц пожилого возраста: особенности этиопатогенеза и медикаментозного лечения / Д.В. Преображенский, Б.А. Сидоренко, Е.В. Тарыкина и др. // Consilium Medicum. 2005. Т. 7, № 12. С. 23-26.
- 95. Прохоренко, И.О. Влияние стресса на состояние микроциркуляции и кислотно-основной гомеостаз у лиц старших возрастных групп / И.О.

- Прохоренко, Е.Г. Зарубина, О.С. Сергеев // Фундаментальные исследования. 2001. № 10. С. 363-366.
- 96. Пшенникова, М.Г. Роль опиоидных пептидов в реакции организма на стресс / М.Г. Пшенникова // Пат. Физиол. 1987. № 3. С. 85-90.
- 97. Пшенникова, М.Г. Феномен стресса. Эмоциональный стресс и его роль в патологии / М.Г. Пшенникова // Патологическая физиология и экспериментальная терапия. 2000. № 2. С. 24-31.
- 98. Сайгитов, Р.Т. Сердечно-сосудистые заболевания в контексте социальноэкономических приоритетов долгосрочного развития России / Р.Т. Сайгитов, А.А. Чулок // Вестник Российской академии медицинских наук. -2015. - Т. 70, № 3. - С. 286-299.
- 99. Самаль, А.Б. Агрегация тромбоцитов: методы изучения и механизмы / А.Б.Самаль, С.И. Черенкевич, Н.Ф. Хмара. М.: Университетское, 1990. 104 с.
- 100. Самотруева, М.А. Оценка иммунокорригирующей активности фенибута / М.А. Самотруева, А.Н. Овчарова, И.Н. Тюренков // Вестник новых медицинских технологий. 2008. № 3. С. 168-169.
- 101. Сапожков, А.В. Возможности фармакологической защиты миокарда при остром коронарном поражении. Ишемические и постишемические расстройства циркуляции / А.В. Сапожков. Кемерово. 1984. С. 51-60.
- 102. Селье, Г. Стресс без дистресса. М: Прогресс, 1979. 123 с.
- 103. Сомова, Л.М. Оксид азота как медиатор воспаления / Л.М. Сомова, Н.Г. Плехова // Вестник ДВО РАН. 2006. № 6. С. 7-80.
- 104. Сосунов, А.А. Оксид азота как межклеточный посредник / А.А. Сосунов // Соровский образовательный журнал. 2000. Т. 6. С. 27-34.
- 105. Спасов, А.А. Сравнительная оценка влияния стереоизомеров и рацемата карнитина на показатели кардио- и гемодинамики у крыс в условиях карнитиндефицитной диеты / А.А. Спасов, И.Н. Иежица, И.Н. Тюренков и др. // Вестник Российской академии медицинских наук. 2006. № 7. С. 20-27.

- 106. Стальная, И.Д., Гаришвили Т.Г. Метод определения малонового диальдегида с помощью тиобарбитуровой кислоты. Современные методы в биохимии. М.: Медицина, 1977. С. 66-68.
- 107. Стражеско, И.Д. Ренин-ангиотензин-альдостероновая система и старение сосудов / И.Д. Стражеско, Д.У. Акашева, Е.Н. Дудинская и др. // Кардиология,. 2013. № 7. С. 78-84.
- 108. Табакаев, М.В. Урбанизация и сердечно-сосудистые заболевания в современном обществе / М.В. Табакаев, Г.В. Артамонова // Российский кардиологический журнал. 2015. Т. 122, № 6. С. 94-99.
- 109. Терской, И.А., Гительзон И.И. О механизме гемолиза / Вопросы биофизики, биохимии и патологии эритроцитов. Красноярск, 1961. № 2. С. 3-5.
- 110. Торкунов, П.А. Действие нового производного таурина при различных вариантах гипоксических состояний / П.А. Торкунов, Н.С. Сапронов // Экспериментальная и клиническая фармакология. 2000. Т. 63, № 1. С. 37-40.
- 111. Тюренков, И.Н. Влияние фенибута на содержание моноаминов и их метаболитов, а также нейротрансмиттерных аминокислот в структурах мозга крыс / И.Н. Тюренков, В.С. Кудрин, В.Б. Наркевич и др. // Экспериментальная и клиническая фармакология. 2009. № 1. С. 60-63.
- 112. Тюренков, И.Н. Депрессивное состояние у крыс при хроническом комбинированном стрессе, вызванном сочетанием разномодальных стрессоров / И.Н. Тюренков, В.В. Багметова, Ю.В. Чернышева и др. // Российский физиологический журнал им. И.М. Сеченова. 2013. Т. 99, № 9. С. 1045-1056.
- 113. Тюренков, И.Н. Изменения функционирования системы микроциркуляции под влиянием нового производного ГАМК-соединения РГПУ-147 при хроническом стрессорном воздействии / И.Н. Тюренков, С.А. Лебедева, В.Н. Перфилова и др. // Регионарное кровообращение и микроциркуляция. 2007. № 4. С. 64-67.

- Тюренков, И.Н. Иммунотропная активность фенотропила и его композиции с глутаминовой кислотой / И.Н. Тюренков, В.М. Берестовицкая, О.С. Васильева и др. // Фармация. 2010. № 8. С. 38-40.
- 115. Тюренков, И.Н. Кардио- и церебропротекторное действие новых структурных аналогов ГАМК / И.Н. Тюренков, В.Н. Перфилова, ЈІ.Е. Бородкина и др. // Вестник Волгоградской медицинской академии. 2000. № 6. C.52-56.
- 116. Тюренков, И.Н. Роль ГАМК-ергической системы мозга в регуляции кровообращения / И.Н. Тюренков, В.Н. Перфилова // Экспериментальная и клиническая фармакология. 2001. № 6. С. 68-72.
- 117. Тюренков, И.Н. Сравнение психотропных свойств глутаминовой кислоты и ее нового производного гидрохлорида бета-фенилглутаминовой кислоты (глутарона) / И.Н. Тюренков, В.В. Багметова, Ю.В. Чернышева и др. // Фундаментальные исследования. 2013. № 3. С. 167-172.
- 118. Тюренков, И.Н. Средство, обладающее антидепрессантным, анксиолитическим, нейропротекторным и иммуностимулирующим действием / И.Н. Тюренков, В.В. Багметова // Патент РФ № 2429834, заявл. 23.07.2010, опубл. 27.09.2011. Бюл. 27. 2011.
- 119. Тюренков, И.Н. Фенибут и его цитрат в предупреждении психоневрологических нарушений, вызванных хроническим стрессом лишением парадоксальной фазы сна / И.Н. Тюренков, В.В. Багметова, Л.Е. Бородкина и др. // Экспериментальная и клиническая фармакология. 2012. № 6. С. 8-13.
- 120. Тюренков, И.Н., Гурбанов К.Г. В кн. достижения современной экспериментальной фармакологии сердечно-сосудистой системы. Воронеж, 1981. С. 50-66.
- 121. Тюренков, И.Н., Перфилова В.Н. Кардиоваскулярные и кардиопротекторные свойства ГАМК и ее аналогов. Волгоград: Изд. ВолгГМУ, 2008. 204 с.

- 122. Удинцев, Н.А. Антиоксидантное действие глутаминовой кислоты / Н.А. Удинцев, В.В. Иванов // Патол. физиология и эксперим. терапия. 1984. Т. 28, № 4. С. 60-62.
- 123. Ушкалова, В.Н. Контроль перекисного окисления липидов / В.Н. Ушкалова, Н.В. Иоанидис, Г.Д. Кадочникова и др. Новосибирск: Изд. Новосибирского университета, 1993. 181 с.
- 124. Филатова, Н.М. Антиишемическая эффективность N-замещенного производного глутамата при курсовом пероральном введении / Н.М. Филатова, Д.С. Блинов, В.П. Балашов, Е.В. Блинова, С.Н. Якушкин // Материалы XXXVIII научной конференции «Огаревские чтения» Мордов. ун-та. Вып. 5. Саранск: Изд-во Мордов. ун-та, 2009. С. 28-30.
- 125. Филатова, Н.М. Изучение антиаритмического действия производного глутаминовой кислоты деанола ацеглумата на фоне сахарного диабета в эксперименте / Н.М. Филатова, Е.Д. Гогина, Е.В. Блинова, Д.С. Блинов // Вестник аритмологии. 2012. №68. С. 50-54.
- 126. Филатова, Н.М. Противоаритмическое действие производных глутаминовой кислоты при экспериментальной ишемии миокарда / Д.С. Блинов, С.Н. Якушкин, Е.В. Блинова, Н.Д. Волкова // Материалы XXXIX научной конференции «Огаревские чтения» Мордов. университета. Вып. 4. Саранск: Изд. Мордов. университета, 2010. С. 56-57.
- 127. Фролькис, В.В. Старение и экспериментальная возрастная патология сердечно-сосудистой системы / В.В. Фролькис, В.В. Безруков, О.К. Кульчицкий. Киев: Наук. Думка, 1994. 248 с.
- 128. Хабриев, Р.У. Руководство по экспериментальному (доклиническому) изучению новых фармакологических веществ, 2 изд. М., 2005.
- 129. Хазанов, В.А. Кардиопротекторные свойства триметазидина и комбинации янтарной и яблочной кислот при острой ишемии миокарда / В.А. Хазанов, А.А. Киселева, К.Ю. Васильев и др. // Бюллетень экспериментальной биологии и медицины. 2009. Т. 147, № 4. С. 395-400.

- 130. Хугаева, В.К. Микроциркуляция при хроническом стрессе / В.К. Хугаева,А.В. Ардасенов // Мезотерапия. 2012. №18.
- 131. Чернышева, Ю.В. Влияние нового производного глутаминовой кислоты на поведение животных с «выученной беспомощностью» / Ю.В. Чернышева, Д.Д. Бородин, Ю.К. Ли и др. // Материалы IV Всероссийского научнопрактического семинара молодых ученых с международным участием «Современные проблемы медицинской химии. Направленный поиск новых лекарственных средств». Волгоград: Издательство ВолгГМУ, 2012. С. 137-138.
- 132. Чукаева, И.И. Кардиопротекция в лечении больных артериальной гипертонией роль лозартана / И.И. Чукаева, Я.Г. Спирякина // Рациональная фармакотерапия в кардиологии. 2013. Т. 9, № 6. С. 660-663.
- 133. Шабанов, П.Д. Нейрохимические механизмы прилежащего ядра, реализующие подкрепляющие эффекты самостимуляции латерального гипоталамуса / Шабанов П.Д., Лебедев А.А. // Медицинский Академический журнал. 2012. Т. 12, № 2. С. 68-76.
- 134. Шабанов, П.Д. Участие ГАМК- и дофаминергических механизмов ядра ложа конечной полоски в подкрепляющих эффектах психотропных средств, реализуемых через латеральный гипоталамус / П.Д. Шабанов, А.А. Лебедев // Рос. физиол. журн. им. И.М. Сеченова. 2011. Т. 97, № 8. С. 804–813.
- 135. Шмерельсон, М.Б. Предишемическая защита сердца глутаминовой кислотой в условиях искусственного кровообращения / М.Б. Шмерельсон, Г.А. Бояринов, В.В. Пичурин // Анестезиология и Реаниматология. 1990. № 2. С. 3-7.
- 136. Якушкин, С.Н. Влияние антиоксидантов на антиаритмическую активность некоторых производных местных анестетиков / С.Н. Якушкин, Д.С. Блинов, Е.В. Блинова и др. // Материалы международной IX научно-практич. конференции «Здоровье и образование в XXI веке». Дели, 2009. С. 230-231.

- 137. Agrawal, A.K. Constitutive and inducible hepatic cytochrome P450 in senescent male and female rats and response on low dose Phenobarbital / A.K. Agrawal, B.H. Shapiro // Drug Metabolism Dispos. 2003. Vol. 31. P. 612-619.
- 138. Alvarez, S. Mitochondrial nitric oxide metabolism in rat muscle during endotoxemia / S. Alvarez, A. Boveris // Free Radic. Biol. Med. 2004. Vol. 37, № 9. P. 1472–1478.
- 139. Antonius, M. VanDongen. Biology of the NMDA Receptor (Frontiers in Neuroscience). Boca Raton: CRC, 2008.
- 140. Atochin, D.N. Endothelial nitric oxide synthase transgenic models of endothelial dysfunction / D.N. Atochin, P.L. Huang // Pflugers Arch. 2010. Vol. 460, № 6.
 P. 965-974.
- 141. Bacon, S.L. Changes in plasma volume associated with mental stress ischemia in patients with coronary artery disease / S.L. Bacon, A. Sherwood, A.L. Hinderliter et al. // Int. J. Psychophysiol. 2006. Vol. 61. P. 143–148.
- 142. Benigni, A. Disruption of the Ang II type 1 receptor promotes longevity in mice / A. Benigni, D. Corna, C. Zoja et al. // J. Clin. Invest. 2009. Vol. 119, № 3. P. 524-530.
- 143. Besse, S. Normal and hypertrophied senescent rat heart: mechanical and molecular characteristics / S. Besse, P. Assayag, C. Delcayre et al. // Am. J. Physiol. 1993. Vol. 265, № 1. P. 183-190.
- 144. Bian, J.S. Immobilization stress induced changes of ventricular electric stability in damaged heart depends on the extent of free radical damage / J.S. Bian, Y.L. Wang, D.X. Li // Acta physiologica sinica. − 1997. № 5. P. 526-530.
- 145. Blacktop, J.M. Antagonism of GABA-B but not GABA-A receptors in the VTA prevents stress- and intra-VTA CRF-induced reinstatement of extinguished cocaine seeking in rats / J.M. Blacktop, O. Vranjkovic, M. Mayer et al. // Neuropharmacology. 2016. № 102. P. 197-206.
- 146. Bolli, R. Cardioprotective function of inducible nitric oxide synthase and role of nitric oxide in myocardial ischemia and preconditioning: an overview of a decade

- of research / R. Bolli // J. Mol. Cell. Cardiol. 2001. Vol. 33, № 11. P. 1897-1918.
- 147. Bradesi, S. Role of spinal microglia in visceral hyperalgesia and NK1R upregulation in a rat model of chronicstress / S. Bradesi, C.I. Svensson, J. Steinauer et al. // Gastroenterology. 2009. Vol. 136, № 4. P. 1339-1348.
- 148. Brydon, L. Psychological stress activates interleukin-1beta gene expression in human mononuclear cells / L. Brydon, S. Edwards, H. Jia et al. // Brain Behav Immun. 2005. Vol. 19, № 6. P. 540-546.
- 149. Buchwalow, I.B. Inducible nitric oxide synthase in the myocard / I.B. Buchwalow, W. Schulze, P. Karczewski et al. // Mol. Cell. Biochem. 2001. Vol. 217, № 1. P. 73-82.
- 150. Cao, X.J. Alteration of messenger RNA and protein levels of cardiac alpha(1)-adrenergic receptor and angiotensin II receptor subtypes during aging in rats / X.J. Cao, Y.F. Li // Can. J. Cardiol. 2009. Vol. 25, № 7. P. 415-420.
- 151. Carrasco, G.A. Neuroendocrine pharmacology of stress / G.A. Carrasco, L.D. Van De Kar // Eur. J. Pharmacol. 2003. № 463. P. 235-272.
- 152. Champion, S. Stress (Tako-tsubo) cardiomyopathy in critically-ill patients / S. Champion, D. Belcour, D. Vandroux et al. // Eur. Heart J. Acute Cardiovasc. Care. 2015. Vol. 4, № 2. P. 189-196.
- 153. Chen, F. p38 MAP kinase inhibitor reverses stress-induced myocardial dysfunction in vivo / F. Chen, H. Kan, G. Hobbs et al. // J. Appl. Physiol. 2009.
 Vol. 106, № 4. P. 1132-1141.
- 154. Chen, P. Neurokinin 1 receptor mediates membrane blebbing and sheer stress-induced microparticle formation in HEK293 cells / P. Chen, S.D. Douglas, J. Meshki et al. // PLoS One. 2012. Vol. 7, № 9.
- 155. Chen, Y.T. Risk factors for heart failure in the elderly: a prospective community-based study / Y.T. Chen, V. Vaccarino, C.S. Williams et al. // Am. J. Med. 1999. Vol. 106, № 6. P. 605-612.

- 156. Claire, H.F. NK1 receptor expressing paraventricular nucleus neurones modulate daily variation in heart rate and stress induced changes in heart rate variability / H.F. Claire, R.B. Jolley // Physiol. Rep. 2014. Vol. 2, № 12.
- 157. Cohen, R. Effect of Physical Activity on the Relation Between Psychosocial Factors and Cardiovascular Events (from the Multi-Ethnic Study of Atherosclerosis) / R. Cohen, N.C. Gasca, R.L. McClelland et al. // Am. J. Cardiol. 2016. № 2.
- 158. Colucci, R. Oxidative stress and immune system in vitiligo and thyroid diseases / R. Colucci, F. Dragoni, S. Moretti // Oxid. Med. Cell. Longev. 2015. Vol. 2015.
- 159. Cordellini, S. Decreased endothelium-dependent vasoconstriction to noradrenaline in acute-stressed rats is potentiated by previous chronic stress: nitric oxide involvement / S. Cordellini, V.S. Vassilieff // Gen. Pharmacol. 1998. Vol. 30, № 1. P. 79-83.
- 160. Crump, C. Low stress resilience in late adolescence and risk of hypertension in adulthood / C. Crump, J. Sundquist, M.A. Winkleby et al. // Heart. 2016. Vol. 102, № 7. P. 541-547.
- Cui, H. Oxidative Stress, Mitochondrial Dysfunction, and Aging / H. Cui, Y. Kong, H. Zhang // Journal of Signal Transduction. 2012.
- 162. Cuisset, T. Usefulness of index of microcirculatory resistance to detect microvascular dysfunction as a potential mechanism of stress-induced cardiomyopathy (Tako-tsubo syndrome) / T. Cuisset, J. Quilici, M. Pankert et al. // Int. J. Cardiol. 2011. Vol. 153, № 3. P. 51-53.
- 163. Curtis, A.L. Evidence for functional release of endogenous opioids in the locus ceruleus during stress termination / A.L. Curtis, N.T. Bello, R.J. Valentino // J. Neurosci. 2001. Vol. 21. P. 1-5.
- 164. Dai, D.F. Cardiac aging in mice and humans: the role of mitochondrial oxidative stress / D.F. Dai, P.S. Rabinovitch // Trends Cardiovasc. Med. 2009. Vol. 19, № 7. P. 213-220.

- 165. De Paula, J.G. Management of multivessel coronary disease after primary angioplasty: staged reintervention versus optimized clinical treatment and two-year follow-up / J.G. De Paula, M.F. de Godoy, M.A. Santos et al. // Rev. Bras. Cir. Cardiovasc. 2014. № 29. P. 177-85.
- 166. Delgado-Morales, R. Adrenocortical and behavioural response to chronic restraint stress in neurokinin-1 receptor knockout mice / R. Delgado-Morales, Eva del Río, A. Gómez-Román et al. // Physiol. Behav. 2012. Vol. 105, № 3. P. 669-675.
- Derian, W. Stress-induced cardiomyopathy: not always apical ballooning / W.
 Derian, D. Soundarraj, M.J. Rosenberg // Rev. Cardiovasc. Med. 2007. Vol. 8.
 P. 228-233.
- 168. Devaki, M. Chronic stress-induced oxidative damage and hyperlipidemia are accompanied by atherosclerotic development in rats / M. Devaki, R. Nirupama, H.N. Yajurvedi // Stress. 2013. Vol. 16, № 2. P. 233-243.
- 169. Dobashi, K. Modulation of endogenous antioxidant enzymes by nitric oxide in rat C6 glial cells / K. Dobashi, K. Pahan, A. Chahal et al. // J. Neurochem. - 1997. -Vol. 68, № 5. - P. 1896-1903.
- 170. Filaretova, L. Does chronic stress enhance the risk of diseases? / L. Filaretova, O. Morozova, F. Laszlo et al. // Endocrine Regulations. 2013. Vol. 47, № 4. P. 177-188.
- 171. Fontes, M.A. Brain angiotensin-(1-7)/Mas axis: A new target to reduce the cardiovascular risk to emotional stress / M.A. Fontes, A. Martins Lima, R.A. Santos // Neuropeptides. 2016. Vol. 56. P. 9-17.
- 172. Fulda, S. Cellular Stress Responses: Cell Survival and Cell DeathInternational / S. Fulda, A.M. Gorman, O. Hori et al. // J. Cell. Biol. 2010. Vol. 2010. 23 p.
- 173. Gadek-Michalska, A. Chronic stress adaptation of the nitric oxide synthases and IL-1β levels in brain structures and hypothalamic-pituitary-adrenal axis activity induced by homotypic stress / A. Gądek-Michalska, J. Tadeusz, P. Rachwalska et al. // J. Physiol. Pharmacol. 2015. Vol. 66, № 3. P. 427-440.

- 174. Gądek-Michalska, A. Cytokines, prostaglandins and nitric oxide in the regulation of stress-response systems / A. Gądek-Michalska, J. Tadeusz, P. Rachwalska et al. // Pharmacol. Rep. 2013. Vol. 65, № 6. P. 1655-1662.
- 175. Gasulla, J. Enhancement of tonic and phasic GABAergic currents following nitric oxide synthase inhibition in hippocampal CA1 pyramidal neurons / J. Gasulla, D.J. Calvo // Neurosci Lett. 2015. Vol. 17, № 590. P. 29-34.
- 176. Gealekman, O. Role of myocardial induc-ible nitric oxide synthase in contractile dysfunction and beta-adrenergic hyporesponsive-ness in rats with experimental volume-overload heart failure / O. Gealekman, Z. Abassi, I. Rubinstein et al. // Circulation. 2002. Vol. 105, № 2. P. 236-243.
- 177. Givvimani, S. Role of mitochondrial fission and fusion in cardiomyocyte contractility / S. Givvimani, S.B. Pushpakumar, N. Metreveli et al. // Int. J. Cardiol. 2015. Vol. 187. P. 325-333.
- 178. Glazachev, O.S. The microcirculatory blood flow and autonomic regulation's functional state in young people with different levels of subjectively experienced psychological stress / O.S. Glazachev, E.N. Dudnik // Fiziol. Cheloveka. 2012. Vol. 38, № 5. P. 50-57.
- 179. Goddard, A.W. Cortical and subcortical gamma amino acid butyric acid deficits in anxiety and stressdisorders: Clinical implications / A.W. Goddard // World J. Psychiatry. 2016. Vol. 6, № 1. P. 43-53.
- 180. Goshen, I. Interleukin-1 (IL-1): A central regulator of stress responses / I. Goshen, R. Yirmiya // Frontiers in Neuroendocrinology. 2009. Vol. 30. P. 30-45.
- 181. Groc, L. NMDA receptor surface trafficking and synaptic subunit composition are developmentally regulated by the extracellular matrix protein Reelin / L. Groc, D. Choquet, F.A. Stephenson et al. // J. Neurosci. 2007. Vol. 27, № 38. P. 10165–10175.
- 182. Gulati, K. Involvement of nitric oxide (NO) in the regulation of stress susceptibility and adaptation in rats / K. Gulati, A. Ray, A. Masood et al. // Indian J. Exp. Biol. 2006. Vol. 44. P. 809-815.

- 183. Gunn, B.G. GABA A receptor-acting neurosteroids: A role in the development and regulation of the stress response / B.G. Gunn, L. Cunningham, S.G. Mitchell // Frontiers in Neuroendocrinology. 2015. Vol. 36. P. 28-48.
- 184. Hasbani, M.J. Dendritic spines lost during glutamate receptor activation reemerge at original sites of synaptic contact / M.J. Hasbani, M.L. Schlief, D.A. Fisher et al. // J. Neurosci. 2001. Vol. 21.
- 185. Helmreich, D.L. Thyroid hormone regulation by stress and behavioral differences in adult male rats / D.L. Helmreich, D. Tylee // Horm. Behav. 2011. Vol. 60, № 3. P. 284-291.
- 186. Herbert, J. Do corticosteroids damage the brain? / J. Herbert, I.M. Goodyer, A.B. Grossman et al. // Journal of Neuroendocrinology. 2006. -Vol. 18. P. 393-411.
- 187. Higashi, Y. Endothelial function and oxidative stress in cardiovascular diseases / Y. Higashi, K. Noma, M. Yoshizumi et al. // Circ. J. 2009. Vol. 73, № 3. P. 411-418.
- 188. Hua, Y. Chronic Akt activation accentuates aging-induced cardiac hypertrophy and myocardial contractile dysfunction: role of autophagy / Y. Hua, Y. Zhang, A.F. Ceylan-Isik et al. // Basic Res. Cardiol. 2011. Vol. 106, № 6. P. 1173-1191.
- 189. Hynd, M. Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimers disease / M. Hynd, H.L. Scott, P. Dodd // Neurochemistry International. 2004. Vol. 45, № 5. P. 583-595.
- 190. Ikeda, Y. Insights into the Role of Mitochondrial Dynamics and Autophagy during Oxidative Stress and Aging in the Heart / Y. Ikeda, S. Sciarretta, N. Nagarajan et al. // Oxidative Medicine and Cellular Longevity. 2014.
- 191. Ikonomidou, H. New use of glutamate antagonists for the treatment of canser / H. Ikonomidou // Eur. Pat. Appl. 1998. P. 21.
- 192. Inan, B. Are increased oxidative stress and asymmetric dimethylarginine levels associated with masked hypertension? / B. Inan, I. Ates, N. Ozkayar et al. // Clin. Exp. Hypertens. 2016. №3. P. 1-5.

- 193. Inoue, N. Stress and atherosclerotic cardiovascular disease / N.J. Inoue // Atheroscler. Thromb. 2014. Vol. 21, № 5. P. 391-401.
- 194. Jain, M. Serial evaluation of microcirculatory dysfunction in patients with Takotsubo cardiomyopathy by myocardial contrast echocardiography / M. Jain, S. Upadaya, S.W. Zarich // Clin. Cardiol. 2013. Vol. 36, № 9. P. 531-534.
- 195. Jessop, D.S. Substance P is involved in terminating the hypothalamo-pituitaryadrenal axis response to acute stress through centrally located neurokinin- 1 receptors / D.S. Jessop, D. Renshaw, P.J. Larsen et al. // Stress. 2000. Vol. 3, P. 209-220.
- 196. Kamal, E. Chrousos. Neuroendocrinology of stress / E. Kamal, M.D. Habib, W. Philip et al. // Endocrinology and Metabolism Clinics. 2001. Vol. 30, № 3. P. 695-728.
- 197. Kamran, M. GABA-induced vasorelaxation mediated by nitric oxide and GABAA receptor in non diabetic and streptozotocin-induced diabetic rat vessels / M. Kamran, A. Bahrami, N. Soltani et al. // Physiol. Bio-phys. 2013. Vol. 32. P. 101-106.
- 198. Kato, H. Stress responses from the endoplasmic reticulum in cancer / H. Kato, H. Nishitoh // Front Oncol. 2015. Vol. 5. 93 p.
- 199. Katoh, M. Effects of the antiplatelet agent TA-993 and its metabolite MB3 on the hemorheological properties of rat and human erythrocytes / M. Katoh, T. Karasawa, H. Doi et al. // Thromb. Res. 2001. № 104. P. 105-112.
- 200. Khan, M. Upregulation of arginase-II contributes to decreased age-related myocardial contractile reserve / M. Khan, J. Steppan, K.H. Schuleri et al. // Eur. J. Appl. Physiol. 2012. Vol. 112, № 8. P. 2933-2941.
- 201. Khan, S.A. Neuronal nitric oxide synthase negatively regulates xanthine oxidoreductase inhibition of cardiac excitation-contraction coupling / S.A. Khan, K. Lee, K.M. Minhas et al. // Proc. Natl. Acad. Sci USA. 2004. Vol. 101. P. 15944-15948.
- 202. Khanna, D. Emotional stress and reversible myocardial dysfunction / D. Khanna, H. Kan, C. Failinger et al. // Cardiovasc. Toxicol. 2006. Vol. 6. P. 183-198.

- 203. Kirby, L.G. Effects of corticotropinreleasing factor on neuronal activity in the serotonergic dorsal raphe nucleus / L.G. Kirby, K.C. Rice, R.J. Valentino // Neuropsychopharmacology. 2000. Vol. 22. P. 148-162.
- 204. Kong, Y. Oxidative stress, mitochondrial dysfunction and the mitochondria theory of aging / Y. Kong, S.E. Trabucco, H. Zhang // Interdiscip. Top Gerontol. 2014. Vol. 39. P. 86-107.
- 205. Kop, W.J. Effects of environmental stress following myocardial infarction on behavioral measures and heart failure progression: The influence of isolated and group housing conditions / W.J. Kop, T.F. Galvao, S.J. Synowski et al. // Physiol. Behav. 2015. Vol. 152. P. 168-174.
- 206. Krenek, P. Isoproterenol-induced heart failure in the rat is associated with nitric oxide-dependent functional alterations of cardiac function / Krenek P., Kmecova J., Kucerova D. et al. // Eur. J. Heart. Fail. 2009. Vol. 11, № 2. P. 140-146.
- 207. Kuhn, M. Neuroplasticity and memory formation in major depressive disorder: an imaging genetics perspective on serotonin and BDNF / M. Kuhn, A. Popovic, L. Pezawas // Restor. Neurol. Neurosci. 2014. Vol. 32, № 1. P. 25-49.
- 208. Kwak, H.B. Effects of aging and exercise training on apoptosis in the heart / Kwak H.B. // J. Exer. Rehabil. 2013. Vol. 9, № 2. P. 212-219.
- 209. Lakatta, E.G. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part II: the aging heart in health: links to heart disease / E.G. Lakatta, D. Levy // Circulation. 2003. Vol. 107, № 2. P. 346-354.
- 210. Lakatta, E.G. Heart aging: a fly in the ointment / Lakatta E.G. // Circ.Res. 2001.- Vol. 88. P. 984-986.
- 211. Lakatta, E.G. The old heart: operation on the edge / E.G. Lakatta, S.J. Sollott, S. Pepe // Novartis. Found. Symp. 2001. Vol. 235. P. 172-196.
- 212. Lampert, R. Behavioral influences on cardiac arrhythmias / R. Lampert // Trends Cardiovasc. Med. 2016. Vol. 26, № 1. P. 68-77.
- 213. Lampert, R. ECG signatures of psychological stress / R. Lampert // J. Electrocardiol. 2015. Vol. 48, № 6. P. 1000-1005.

- 214. Lanza, I.R. Functional assessment of isolated mitochondria in vitro / I.R. Lanza, K.N. Sreekumaran // Methods Enzymol. 2009. Vol. 457. P. 349-372.
- 215. Lee, Y.P. Diverse clinical spectrum of stress-induced cardiomyopathy / Y.P. Lee, K.K. Poh, C.H. Lee et al. // Int. J. Cardiol. 2008. Vol. 133, № 2. P. 272-275.
- 216. Li, Y. Nitric oxide inhibits the firing activity of hypo-thalamic paraventricular neurons that innervate the medulla oblongata: Role of GABA / Y. Li, W. Zhang, J.E. Stern // Neuroscience. 2003. Vol. 118, № 3. P. 585-601.
- 217. Li, Y.Q. Central origins of substance P-like immunoreactive fibers and terminals in the spinal trigeminal caudal subnucleus in the rat / Y.Q. Li, Z.M. Wang, H.X. Zheng et al. // Brain Res. 1996. Vol. 719. P. 219-224.
- 218. Lin, J. Age-related cardiac muscle sarcopenia: Combining experimental and mathematical modeling to identify mechanisms / J. Lin, E.F. Lopez, Y. Jin et al. // Exp. Gerontol. 2008. Vol. 43, № 4. P. 296-306.
- 219. Liu, C.N. Effects of SNP, GLU and GABA on the neuronal activity of striatum nucleus in rats / C.N. Liu, X. Liu, D. Gao et al. // Pharmacol. Res. 2005. Vol. 51, № 6. P. 547-551.
- 220. Liu, Y.W. Propofol stimulates noradrenalin-inhibited neurons in the ventrolateral preoptic nucleus by reducing GABAergic inhibition / Y.W. Liu, W. Zuo, J.H. Ye // Anesth. Analg. 2013. Vol. 117, № 2. P. 358-363.
- 221. Lorenza, E. Stress and aging induce distinct polyQ protein aggregation states / E. Lorenza, M. Mazzeo, D. Dersh et al. // Proc. Natl. Acad. Sci USA. 2012. Vol. 109, № 26. P. 10587-10592.
- 222. Lown, B. Psychophisiologic factors in sudden cardiac death / B. Lown, R. DeSilva, P. Reich // Amer. J. Psychiatr. 1980. Vol. 137, № 11. P. 1325-1335.
- 223. Luisi, S. Neuroendocrine and stress-related aspects of endometriosis / S. Luisi, A. Pizzo, S. Pinzauti et al. // Neuro Endocrinol. Lett. 2015. Vol. 36, № 1. P. 15-23.

- 224. Mahar, I. Stress, serotonin, and hippocampal neurogenesis in relation to depression and antidepressant effects / I. Mahar, F.R. Bambico, N. Mechawar et al. // Neurosci. Biobehav. Rev. 2014. Vol. 38. P. 173-192.
- 225. Marilyn, S.C. Human stress cardiomyopathy / S.C. Marilyn, S.H. Charles // Human Pathology. 1980. Vol. 11. P. 123-132.
- 226. McBryde, F.D. Chronic knockdown of nNOS in the paraventricular nucleus (PVN) produces persistent increases in arterial pressure and renal sympathetic nerve activity (RSNA) in the rat / F.D. McBryde, B.Liu, S. Kasparov et al. // The FASEB Journal. 2011. Vol. 25. P. 1078.
- 227. McEntee, W.J. «Glutamate: Its role in learning, memory, and the aging brain» / W.J. McEntee, T.H. Crook // Psychopharmacology. 1993. Vol. 111, № 4. P. 391-401.
- 228. Meerson, F.Z. Pathogenesis and Prophylaxis of Cardiac Lesions in Stress. / F.Z. Meerson / Advances in Myocardiology. 1983. Vol. 4. P. 3-21.
- 229. Menabde, K.O. Tissue specificity of lipid peroxidation under emotional stress in rats / K.O. Menabde, G.M. Burdzhanadze, M.V. Chachua et al. // Ukr. Biokhim. Zh. 2011. Vol. 83, № 3. P. 85-90.
- 230. Merksamer, I.P. The sirtuins, oxidative stress and aging: an emerging link / I.P. Merksamer, Y. Liu, W. He et al. // Aging (Albany NY). 2013. Vol. 5, № 3. P. 144-150.
- 231. Mickey, B.J. Emotion Processing, Major Depression, and Functional Genetic Variation of Neuropeptide Y / B.J. Mickey, Z. Zhou, M.M. Heitzeg et al. / Archives of General Psychiatry. 2011. Vol. 68, № 2. P. 158.
- 232. Miller, D. Neuroendocrine aspects of the response to stress / D. Miller, J. O'Callaghan // Metabolism. 2002. Vol. 51. P. 5-10.
- 233. Morales-Medina, J.C. A possible role of neuropeptide Y in depression and stress / J.C. Morales-Medina, Y. Dumont, R. Quirion // Brain Res. 2010. Vol. 1314. P. 194-205.
- 234. Morrow, A.L. Effects of progesterone or neuroactive steroid? / A.L. Morrow, M.J. Van Doren, L.L. Devaud // Nature. 1998. Vol. 395, № 6703. P. 652-653.

- 235. Muller-Strahl, G. Inhibition of nitric oxide synthase augments the positive inotropic effect of nitric oxide donors in the rat heart / G. Muller-Strahl, K. Kottenberg, H.G. Zimmer et al. // Journal of Physiology. 2000. Vol. 522. P. 311-320.
- 236. Nguyen, C.T. The age-related alterations of cardiac tiissues microstructure and material properties in Fischer 344 rats / C.T. Nguyen, C.S. Hall, M.J. Scott et al. // Ultrasound Med. Biol. 2001. Vol. 27, № 5. P. 611-619.
- 237. Okano, S. Effects of TAK-637, a novel neurokinin-1 receptor antagonist, on colonic functionin vivo / S. Okano, H. Nagaya, Y. Ikeura et al. // J. Pharmacol. Exp. Ther. 2001. Vol. 298. P. 559-564.
- 238. Olivenza, R. Chronic stress induces the expression of inducible nitric oxide synthase in rat brain cortex / R. Olivenza, M.A. Moro, I. Lizasoain et al. // J. Neurochem. 2000. Vol. 74, № 2. P. 785-791.
- 239. Opthof, T. The normal range and determinants of the intrinsic heart rate in man / T. Opthof // Cardiovasc. Res. 2000. Vol. 45, № 1. P. 177-184.
- 240. Pal, R. Pharmacological and biochemical studies on the role of free radicals during stress-induced immunomodulation in rats / R. Pal, K. Gulati, B. Banerjee et al. // Int. Immunopharmacol. 2011. Vol. 11, № 11. P. 1680-1684.
- 241. Paneni, F. Role of oxidative stress in endothelial insulin resistance / F. Paneni, S. Costantino, F. Cosentino // World J. Diabetes. 2015. Vol. 6, № 2. P. 326-332.
- 242. Partridge, J.G. Stress Increases GABAergic Neurotransmission in CRF Neurons of the Central Amygdala and Bed nucleus Stria Terminalis / J.G. Partridge, P.A. Forcelli, R. Luo et al. // Neuropharmacology. 2016. Vol. 107. P. 239-250.
- 243. Penninger, J. The Gene Knockout Facts book. 1998. 293 p.
- 244. Pertsov, S.S. Intensity of oxidative and antioxidant processes in the brain of rats with various behavioral characteristics during acute stress / S.S. Pertsov, E.V. Koplik, L.S. Kalinichenko // Bull. Exp. Biol. Med. 2011. Vol. 152, № 1. P. 1-4.

- 245. Pietersen, H.G. Glutamate metabolism of the heart during coronary artery bypass grafting / H.G. Pietersen, C.J. Langenberg, G. Geskes et al. // Clin. Nutr. 1998. Vol. 17, № 2. P. 73-75.
- 246. Pisarenko, O.I. On the mechanism of enhanced ATP formation in hypoxic myocardium caused by glutamic acid / O.I. Pisarenko, E.S. Solomatina, V.E. Ivanov et al. // Basic Research in Cardiology. 1985. Vol. 80, № 2. P. 126-134.
- 247. Plotnikoff, N.P., Faith R.E., Murgo A.G., Good R.A. Cytokines: Stress and Immunity. Boca Raton: CRC Press, 2006. 2nd Edition. 405 p.
- 248. Poljsak, B. Intrinsic skin aging: the role of oxidative stress / B. Poljsak, R.G. Dahmane, A. Godic // Acta Dermatovenerol. Alp. Pannonica Adriat. 2012. Vol. 21, № 2. P. 33-36.
- 249. Prasadam, I. Inhibition of p38 pathway leads to OA-like changes in a rat animal model / I. Prasadam, X. Mao, Y. Wang et al. // Rheumatology. 2012. Vol. 51, № 5. P. 813-823.
- 250. Rajendran, P. The vascular endothelium and human diseases / P. Rajendran, T. Rengarajan, J. Thangavel et al. // Int. J. Biol. Sci. 2013. Vol. 9, № 10. P. 1057-1069.
- 251. Robles, T. Out of Balance: A New Look at Chronic Stress, Depression, and Immunity / T. Robles, R. Glaser, J. Kiecolt-Glaser // Current directions in Psychological Science. 2005. Vol. 14. P. 111-115.
- 252. Ronald de Kloet, E. Hormones, brain and stress / E. Ronald de Kloet // Endocrine Regulations. 2003. Vol. 37. P. 51-68.
- 253. Rosenkranz, S. TGF-beta1 and angiotensin networking in cardiac remodelling / S. Rosenkranz // Cardiovasc. Res. 2004. Vol. 63, № 3. P. 423-432.
- 254. Sagi, Y. Nitric oxide regulates synaptic transmission between spiny projection neurons / Y. Sagi, M. Heiman, D. Jayms et al. // PNAS. 2014. Vol. 111, № 49.
 P. 17636-17641.

- 255. Sawai, A. Influence of mental stress on cardiovascular function as evaluated by changes in energy expenditure / A. Sawai, K. Ohshige, K. Yamasue et al. // Hypertens Res. 2007. Vol. 30. P. 1019-1027.
- 256. Schmidlin, O. Effects of physiological aging on cardiac electrophysiology in perfused Fischer 344 rat hearts / O. Schmidlin, S. Bharati, M. Lev et al. // Am. J. Physiol. 1992. -Vol. 262, № 1. P. H97-H105.
- 257. Schmidt, A. Exogenous nitric oxide regulates activity and synthesis of vascular endothelial nitric oxide synthase / A. Schmidt, S. Bilgasem, S. Lorkowski et al. // Eur. J. Clin. Invest. 2008. Vol. 38, № 7. P. 476-485.
- 258. Schwartz, J.B. Dopaminergic responses in the Fischer 344 rat heart: preserved chronotropic and dromotropic responses with aging / J.B. Schwartz // J. Gerontology. 1997. 52, № 1. P. M36-M43.
- 259. Shaw, P.X. Oxidative Stress and Aging Diseases / P.X. Shaw, G. Werstuck, Y. Chen // Oxidative Medicine and Cellular Longevity. 2014. Vol. 2014. 9 p.
- 260. Shigeri, Y. Molecular pharmacology of glutamate transporters, EAATs and VGLUTs / Y. Shigeri, R.P. Seal, K. Shimamoto // Brain Research Reviews. 2004. Vol. 45, № 3. P. 250-265.
- 261. Siwik, D.A. Oxidative stress regulates collagen synthesis and matrix mttalloproteinase activitiy cagdiac fibroblasts / D.A. Siwik et al. // Am. J. Physiol. 2001. Vol. 280. P. 53-60.
- 262. Smith, C. Illuminating the interrelated immune and endocrine adaptations after multiple exposures to short immobilization stress by in vivo blocking of IL-6 / C. Smith, N. Wilson, A. Louw et al. // Am. J. Physiol. RegulatoryIntegrative Comp. Physiol. 2007. Vol. 292. P. 1439-1447.
- 263. Smith, S.K. Solibilization of human platelet α-adrenogetic receptors: evidence that agonist occupancy of the receptor stabilizes receptor-effector interactions / S.K. Smith, L.E. Limbird // Proc. Nat. Acad. Sci. USA. 1981. Vol. 78, № 7. P. 4026-4030.
- 264. Smith, W.S. Pathophysiology of Focal Cerebral Ischemia: a Therapeutic Perspective / W.S. Smith // J. Vase. Interv. Radiol. 2004. Vol.15. P. 3-12.

- 265. Snyder, S.H. Novel Neurotransmitters and Their Neuropsychiatric Relevance / S.H. Snyder, C.D. Ferris // Am. J. Psychiatry. 2000. Vol. 157. P. 1738-1751.
- 266. Snyder-Mackler, N. Shared signatures of social stress and aging in peripheral blood mononuclear cell gene expression profiles / N. Snyder-Mackler, M. Somel, J. Tung // Aging Cell. 2014. Vol. 13, № 5. P. 954-957.
- 267. Stein, M. Reduction of fibrosis-related arrhythmias by chronic renin-angiotensin-aldosterone system inhibitors in an aged mouse model / M. Stein, M. Boulaksil, J.A. Jansen et al. // Am. J. Physiol. Heart Circ. Physiol. 2010. Vol. 299, № 2. P. H310-H321.
- 268. Strait, J.B. Aging-associated cardiovascular changes and their relationship to heart failure / J.B. Strait, E.G. Lakatta // Heart Failure Clin. 2012. Vol. 8, № 1. P. 143-164.
- 269. Stratton, J.R. Effects of aging on cardio-vascular responses to parasympathetic withdrawal / J.R. Stratton, W.C. Levy, J.H. Caldwell et al. // Journal of the American College of Cardiology. 2003. Vol. 41, № 11. P. 2077-2083.
- 270. Takeda, M. Constitutive nitric oxide synthase is associated with retinal vascular permeability in early diabetic rats / M. Takeda, F. Mori, A. Yoshida et al. // Diabetologia. 2001. Vol. 44, № 8. P. 1043-1050.
- 271. Templin, C. Clinical Features and Outcomes of Takotsubo (Stress) Cardiomyopathy / C. Templin, J.R. Ghadri, J. Diekmann et al. // N. Engl. J. Med. 2015. Vol. 373, № 10. P. 929-938.
- Tominaga, R. Protective effects of glutamate and aspartate on the ischemic and reperfused myocardium of hearts from starved rats / R. Tominaga, M. Yoshitoshi,
 Y. Kawachi et al. // Jpn. J. Surg. 1985. Vol. 15, № 5. P. 387-394.
- 273. Tousoulis, D. Conflicting effects of nitric oxide and oxidative stress in chronic heart failure: potential therapeutic strategies / D. Tousoulis, N. Papageorgiou, A. Briasoulis et al. // Heart Fail. Rev. 2012. Vol. 17, № 1. P. 65-79.
- 274. Townsend, D. Age-dependent Dystrophin Loss and Genetic Reconstitution Establish a Molecular Link Between Dystrophin and Heart Performance During

- Aging / D. Townsend, M. Daly, J.S. Chamberlain et al. // Molecular Therapy. 2011. Vol. 19, № 10. P. 1821-1825.
- 275. Turdi, S. AMP-activated protein kinase deficiency exacerbates aging-induced myocardial contractile dysfunction / S. Turdi, X. Fan, J. Li et al. // Aging Cell. 2010. Vol. 9, № 4. P. 592-606.
- 276. Tyurenkov, I.N. The antiamnestic properties of the glutamic acid and its new phenylic derivative / I.N. Tyurenkov, V.V. Bagmetova, Yu.V. Chernysheva // Materials of the conference «Education and science without borders» / International Journal Of Applied And Fundamental Research. 2013. № 2.
- 277. Uchino, B.N. Aging and cardio-vascular reactivity to stress: longitudinal evidence for changes in stress reactivity / B.N. Uchino, J. Holt-Lunstad, L.E. Bloor et al. // Psychology and aging. 2005. Vol. 20, №. 1. P. 134-143.
- 278. Vaiva, G. Low posttrauma GABA plasma levels as a predictive factor in the development of acute posttraumatic stress disorder / G. Vaiva, P. Thomas, F.Ducrocq // Biol.Psychiatry. 2004. Vol. 55, №3. P. 250-254.
- 279. Venturini, A. The importance of myocardial amino acids during ischemia and reperfusion in dilated left ventricle of patients with degenerative mitral valve disease / A. Venturini, R. Ascione, H. Lin // The Mol. Cell. Biochem. 2009. Vol. 330, № 1-2. P. 63-70.
- 280. Verhamme, P. The pivotal role of the endothelium in haemostasis and thrombosis / P. Verhamme, M.F. Hoylaerts // Acta Clin. Belg. 2006. Vol. 61, № 5. P. 213-219.
- 281. Verkuyl, J. GABAergic transmission in the rat paraventricular nucleus of the hypothalamus is suppressed by corticosterone and stress / J. Verkuyl, H. Karst // Eur. J. Neurosci. 2005. Vol. 21. P. 113-121.
- 282. Villanueva, C. Subcellular and cellular locations of nitric-oxide synthase isoforms as determinants of health and disease / C. Villanueva, C. Giulivi // Free Radic. Biol. Med. 2010. Vol. 49, № 3. P. 307-316.
- 283. Viskin, S. Ideopathic ventricular fibrillation / S. Viskin, B. Belhassen // Amer. Heart J. 1990. Vol. 120, № 3. P. 661-671.

- 284. Wang, C.H. Oxidative stress response elicited by mitochondrial dysfunction: implication in the pathophysiology of aging / C.H. Wang, S.B. Wu, Y.T. Wu et al. // Exp. Biol. Med. 2013. Vol. 238, № 5. P. 450-460.
- 285. Wang, C.H. Oxidative stress response elicited by mitochondrial dysfunction: implication in the pathophysiology of aging / C.H. Wang, S.B. Wu, Y.T. Wu et al. // Exp. Biol. Med. (Maywood). 2013. Vol. 238, № 5. P. 450-460.
- 286. Wang, L. Oxidative stress and substance P mediate psychological stress-induced autophagy and delay of hair growth in mice / C.H. Wang, S.B. Wu, Y.T. Wu et al. // Arch. Dermatol. Res. 2015. Vol. 307, № 2. P. 171-181.
- 287. Wise, S. Beneficial impact of specific substances on cardiac: reperfusion injury in vitro / S. Wise, B.T. Mawner et al. // Clin. Nut. 1992. Vol. 11. P. 71.
- 288. Woodman, O.L. Contribution of nitric oxide, cyclic GMP and K+ channels to acetylcholine-induced dilatation of rat conduit and resistance arteries / O.L. Woodman, O. Wongsawatkul, C.G. Sobey // Clin. Exp. Pharmacol. Physiol. 2000. Vol. 27, № 1. P. 34-40.
- 289. Wu, J.J. Mitochondrial dysfunction and oxidative stress mediate the physiological impairment induced by the disruption of autophagy / J.J. Wu et al. // Aging. 2009. Vol. 1, № 4. P. 425-437.
- 290. Yan, L.J. Positive oxidative stress in aging and aging-related disease tolerance / L.J. Yan // Redox Biol. 2014. Vol. 2. P. 165-169.
- 291. Yano, Y. Blood Pressure Reactivity to Psychological Stress in Young Adults and Cognition in Midlife: The Coronary Artery Risk Development in Young Adults (CARDIA) Study / Y. Yano, H. Ning, J.P. Reis et al. // J. Am. Heart Assoc. 2016. Vol. 5, № 1.
- 292. Yee, A. Anhedonia in depressed patients on treatment with selective serotonin reuptake inhibitor anti-depressant-A two-centered study in Malaysia / A. Yee, S.C. Chin, A.H. Hashim et al. // Int. J. Psychiatry Clin. Pract. 2015. Vol. 15. P. 1-6.
- 293. Yusuf, S. Association of psychosocial risk factors with risk of acute myocardial infarction in 11 119 cases and 13 648 controls from 52 countries (the

- INTERHEART study): case-control study / S. Yusuf, S. Hawken, S. Ounpuu et al. // Lancet. 2004. Vol. 364. P. 937-962.
- 294. Zelena, D. The janus face of stress on reproduction: from health to disease / D. Zelena // Int. J. Endocrinol. 2015. Vol. 2015.
- 295. Zhang, Y. Mitochondrial aldehyde dehydrogenase 2 accentuates aging-induced cardiac remodeling and contractile dysfunction: role of AMPK, Sirt1, and mitochondrial function / Y. Zhang, S.L. Mi, N. Hu et al. // Free Radic. Biol. Med. 2014. Vol. 71. P. 208-220.
- 296. Zile, M. New concepts in diastolic dysfunction and diastolic heart failure: part I: diagnosis, prognosis, and measurements of diastolic function / M. Zile, D. Brutsaert // Circulation. 2002. Vol. 105. P. 1387-1389.
- 297. Zutphen, L.F. Principles of laboratory animal science / L.F. Zutphen, V. Baumans, A.C.Beynen // Amsterdam: Elsevier, 1993. 389 p.