Оценочные средства для проведения аттестации по дисциплине «Теория вероятностей и математическая статистика» для обучающихся 2023 года поступления по образовательной программе 38.03.02 Менеджмент,

профиль Управление в здравоохранении (бакалавриат), форма обучения очно-заочная 2024- 2025 учебный год.

1. Оценочные средства для проведения текущей аттестации по дисциплине

Текущая аттестация включает следующие типы заданий: тестирование, решение ситуационных задач, оценка освоения практических навыков (умений), контрольная работа, написание и защита реферата, собеседование по контрольным вопросам

1. Примеры тестовых заданий

Проверяемые индикаторы достижения компетенции: ОПК-2.1.1, ОПК-2.1.2, ОПК-2.1.3, ОПК-2.1.4, ОПК-5.1.1, ОПК-5.1.2, ОПК-6.1.1

- **1.** ГРАФИЧЕСКОЕ ИЗОБРАЖЕНИЕ ЗАКОНА НОРМАЛЬНОГО РАСПРЕДЕЛЕНИЯ ИМЕЕТ ВИД
 - 1) гиперболы
 - 2) восходящей прямой
 - 3) нисходящей прямой
 - 4) колоколобразной кривой
 - 5) синусоиды
- **2.** ОСЬЮ СИММЕТРИИ НОРМАЛЬНО РАСПРЕДЕЛЕННОГО ВАРИАЦИОННОГО РЯДА ЯВЛЯЕТСЯ
 - 1) нижняя граница диапазона значений
 - 2) верхняя граница диапазона значений
 - 3) математическое ожидание
 - 4) дисперсия
 - 5) среднеквадратическое отклонение
- **3.** ПРИ УВЕЛИЧЕНИИ СРЕДНЕГО ЗНАЧЕНИЯ НОРМАЛЬНО РАСПРЕДЕЛЕННЫЙ ВАРИАЦИОННЫЙ РЯД
 - 1) смещается вправо
 - 2) смещается влево
 - 3) сужается
 - 4) расширяется
 - 5) не изменяется

4. ПРИ УМЕНЬШЕНИИ СРЕДНЕГО КВАДРАТИЧЕСКОГО ОТКЛОНЕНИЯ НОРМАЛЬНО РАСПРЕДЕЛЕННЫЙ ВАРИАЦИОННЫЙ РЯД

- 1) смещается вправо
- 2) смещается влево
- 3) сужается
- 4) расширяется
- 5) не изменяется

5. ПРАВИЛО ТРЁХ СИГМ ПОЗВОЛЯЕТ ПРЕДЕЛИТЬ

- 1) соответствие вариационного ряда закону нормального распределения
 - 2) величину среднеквадратического отклонения
 - 3) величину математического ожидания
 - 4) дискретность или непрерывность случайной величины
- 5) вероятность нахождения случайной величины в некотором интервале

6. ЗАКОН НОРМАЛЬНОГО РАСПРЕДЕЛЕНИЯ ТАКЖЕ НАЗЫВАЮТ

- 1) законом Ньютона-Лейбница
- 2) законом Гаусса
- 3) законом Эйлера
- 4) правилом трёх сигм
- 5) законом Байеса

7. КРИВАЯ НОРМАЛЬНО РАСПРЕДЕЛЕННОГО ВАРИАЦИОННОГО РЯДА СТАНЕТ ШИРЕ, ЕСЛИ

- 1) увеличится среднее значение
- 2) увеличится математическое ожидание
- 3) уменьшится математическое ожидание
- 4) увеличится среднеквадратическое отклонение
- 5) уменьшится среднеквадратическое отклонение

8. В ВИДЕ СТОЛБЧАТОЙ ГИСТОГРАММЫ ОБЫЧНО ИЗОБРАЖАЮТ

- 1) многоугольник распределения
- 2) функцию распределения дискретной величины
- 3) функцию распределения непрерывной величины
- 4) вероятностный ряд
- 5) законом распределения

9. ЗНАЧЕНИЕ КОЭФФИЦИЕНТА КОРРЕЛЯЦИИ МОЖЕТ ИЗМЕНЯТЬСЯ В ПРЕДЕЛАХ:

- 1) от 0 до +1
- 2) от -2 до +2
- 3) от -1 до +1
- 4) от 0 до 3
- 5) от ∞ до + ∞

10.ЕСЛИ ЗНАЧЕНИЕ КОЭФФИЦИЕНТА КОРРЕЛЯЦИИ РАВНО \pm 1, TO:

- 1) корреляционная зависимость отсутствует
- 2) зависимость между случайными величинами является функциональной зависимостью
- 3) зависимость между случайными величинами является интегральной зависимостью
- 4) зависимость между случайными величинами является квадратичной зависимостью;
- 5) корреляционная зависимость является слабо выраженной

2. Пример ситуационной задачи

Проверяемые индикаторы достижения компетенции: ОПК-2.1.1, ОПК-2.2.2, ОПК-2.2.3, ОПК-2.2.4, ОПК-2.2.5, ОПК-2.3.1, ОПК-2.3.2, ОПК-3.3.2, ОПК-5.2.1, ОПК-5.2.2, ОПК-5.3.1, ОПК-5.3.2., ОПК-5.3.3, ОПК-6.2.1, ОПК-6.3.1

ЗАДАЧА

Значения уровней систолического и диастолического давления (в мм рт. ст.) у здоровых 10 юношей в возрасте 18 лет представлены в таблице:

Систол.	105	115	115	110	110	120	120	120	125	110
Диастол.	65	70	65	65	70	75	75	70	75	70

Необходимо:

- 1. Представить графически распределение X и У.
- 2. Рассчитать величину коэффициента корреляции и по его величине сделать вывод о силе и направлении связи.
- 3. Определить параметры линейной регрессии, получить уравнение линейной регрессии и построить прямую регрессии

3. Примеры заданий по оценке освоения практических навыков

Проверяемые индикаторы достижения компетенции: ОПК-2.1.1, ОПК-2.2.2, ОПК-2.2.3, ОПК-2.2.4, ОПК-2.2.5, ОПК-2.3.1, ОПК-2.3.2, ОПК-5.2.1, ОПК-5.2.2, ОПК-5.3.1, ОПК-5.3.2, ОПК-5.3.3, ОПК-6.2.1, ОПК-6.3.1

ПРИМЕР 1.

При подсчете количества узлов на стеблях основного вида очанки (Euphrasy pralcurta Chitr.) были получены следующие данные: 8, 10, 7, 14, 11, 10, 8, 10, 6, 9, 8, 11, 7, 12.

Выполнить первичную статистическую обработку выборочных данных:

- 1) построить безынтервальный вариационный ряд и полигон распределения
- 2) сделать точечную оценку генеральных параметров: средней, дисперсии, среднеквадратического отклонения, моды, медианы
- 3) построить доверительный интервал для генеральной средней (с вероятностью 0,95).

Основные промежуточные результаты вычислений представить в таблицах

ПРИМЕР 2.

Случайная величина задана следующим законом распределения:

X	-10	-8	-6	-4	-2
P	0,4	0,1	0,2	?	0,1

Найти: 1) неизвестную вероятность; 2) математическое ожидание, дисперсию и среднеквадратическое отклонение; 3) функцию распределения случайной величины F(X)и построить график функции распределения; 4) вероятность того, что $X \in (x_2; x_5)$.

4. Пример варианта контрольной работы

Проверяемые индикаторы достижения компетенции: ОПК-2.1.1, ОПК-2.1.2, ОПК-2.1.3, ОПК-2.1.4, ОПК-5.1.1, ОПК-5.1.2, ОПК-6.1.1

ВАРИАНТ 1

<u>ЗАДАЧА 1.</u>

Перед сдачей экзамена у студентов определялась частота пульса.

Были получены следующие данные:

- у 2 студентов 76 ударов в минуту,
- у 3 студентов 80 ударов в минуту,
- у 4 студентов 108 ударов в минуту,

```
у 2 студентов 116 ударов в минуту,
```

у 20 студентов 88 ударов в минуту,

у 6 студентов 98 ударов в минуту,

у 17 студентов 86 ударов в минуту

После сдачи экзамена она составляла:

у 19 студентов 78 ударов в минуту,

у 3 студентов 76 ударов в минуту,

у 3 студентов 75 ударов в минуту,

у 4 студентов 75 ударов в минуту,

у 2 студентов 85 ударов в минуту,

у 6 студентов 82 удара в минуту,

у 17 студентов – 79 ударов в минуту.

Введите данные в Exell. Постройте гистограммы. Рассчитайте параметры выборок. Определите, достоверно ли отличается показатель частоты пульса перед экзаменом от частоты пульса у этих же студентов после экзамена (при уровне значимости р < 0,05)? Определите доверительные интервалы для генеральных средних значений частоты пульса до и после экзамена.

ЗАДАЧА 2.

Даны результаты измерений частоты сердечных сокращений 11 студентов, проведенных сразу после окончания занятий по физкультуре (выборка X1), и 10 студентов — через 30 минут после окончания занятий по физкультуре (выборка X2):оценки дисперсий соответственно равны S^2_1 = 139,9, S^2_2 = 74,2. При уровне значимости 0,05 проверить гипотезу о равенстве генеральных дисперсий по результатам проведенных измерений.

5. Примеры тем рефератов

Проверяемые индикаторы достижения компетенции: ОПК-2.1.1, ОПК-2.1.2, ОПК-2.1.3, ОПК-2.1.4, ОПК-5.1.1, ОПК-5.1.2, ОПК-6.1.1

- 1. История переписи населения в отечественной статистике.
- 2. Характеристика современной демографической ситуации.

3. Система показателей уровня жизни населения.

6. Примеры контрольных вопросов для собеседования

Проверяемые индикаторы достижения компетенции: ОПК-2.1.1, ОПК-2.1.2, ОПК-2.1.3, ОПК-2.1.4, ОПК-5.1.1, ОПК-5.1.2, ОПК-6.1.1

- 1. Случайные события и их классификация. Полная группа событий. Частота событий и ее свойство статистической устойчивости. Классическое и статистическое определения вероятности случайного события. Аксиомы теории вероятностей и следствие из них.
- 2. Операции над событиями. Сумма событий. Теоремы сложения вероятностей.
- 3. Произведение событий. Теоремы умножения вероятностей.
- 4. Повторные независимые испытания. Схема Бернулли. Подсчёт вероятности при повторных независимых испытаниях.
- 2. Оценочные средства для проведения промежуточной аттестации по дисциплине

Промежуточная аттестация проводится в форме зачета.

Промежуточная аттестация включает следующие типы заданий: тестирование.

1. Примеры тестовых заданий

Проверяемые индикаторы достижения компетенции: ОПК-2.1.1, ОПК-2.1.2, ОПК-2.1.3, ОПК-2.1.4, ОПК-5.1.1, ОПК-5.1.2, ОПК-6.1.1

- 1. ГРАФИЧЕСКОЕ ИЗОБРАЖЕНИЕ ЗАКОНА НОРМАЛЬНОГО РАСПРЕДЕЛЕНИЯ ИМЕЕТ ВИД
 - 6) гиперболы
 - 7) восходящей прямой
 - 8) нисходящей прямой
 - 9) колоколобразной кривой
 - 10) синусоиды
- 2. ОСЬЮ СИММЕТРИИ НОРМАЛЬНО РАСПРЕДЕЛЕННОГО ВАРИАЦИОННОГО РЯДА ЯВЛЯЕТСЯ
 - 6) нижняя граница диапазона значений
 - 7) верхняя граница диапазона значений
 - 8) математическое ожидание
 - 9) дисперсия
 - 10) среднеквадратическое отклонение

- 3. ПРИ УВЕЛИЧЕНИИ СРЕДНЕГО ЗНАЧЕНИЯ НОРМАЛЬНО РАСПРЕДЕЛЕННЫЙ ВАРИАЦИОННЫЙ РЯД
 - 6) смещается вправо
 - 7) смещается влево
 - 8) сужается
 - 9) расширяется
 - 10) не изменяется
- 4. ПРИ УМЕНЬШЕНИИ СРЕДНЕГО КВАДРАТИЧЕСКОГО ОТКЛОНЕНИЯ НОРМАЛЬНО РАСПРЕДЕЛЕННЫЙ ВАРИАЦИОННЫЙ РЯД
 - б) смещается вправо
 - 7) смещается влево
 - 8) сужается
 - 9) расширяется
 - 10) не изменяется
- 5. ПРАВИЛО ТРЁХ СИГМ ПОЗВОЛЯЕТ ПРЕДЕЛИТЬ
- 6) соответствие вариационного ряда закону нормального распределения
 - 7) величину среднеквадратического отклонения
 - 8) величину математического ожидания
 - 9) дискретность или непрерывность случайной величины
- 10) вероятность нахождения случайной величины в некотором интервале
- 6. ЗАКОН НОРМАЛЬНОГО РАСПРЕДЕЛЕНИЯ ТАКЖЕ НАЗЫВАЮТ
 - 6) законом Ньютона-Лейбница
 - 7) законом Гаусса
 - 8) законом Эйлера
 - 9) правилом трёх сигм
 - 10) законом Байеса
- 7. КРИВАЯ НОРМАЛЬНО РАСПРЕДЕЛЕННОГО ВАРИАЦИОННОГО РЯДА СТАНЕТ ШИРЕ, ЕСЛИ
 - 6) увеличится среднее значение
 - 7) увеличится математическое ожидание
 - 8) уменьшится математическое ожидание
 - 9) увеличится среднеквадратическое отклонение
 - 10) уменьшится среднеквадратическое отклонение
- 8. В ВИДЕ СТОЛБЧАТОЙ ГИСТОГРАММЫ ОБЫЧНО ИЗОБРАЖАЮТ
 - 6) многоугольник распределения
 - 7) функцию распределения дискретной величины
 - 8) функцию распределения непрерывной величины
 - 9) вероятностный ряд
 - 10) законом распределения
 - 9. ЗНАЧЕНИЕ КОЭФФИЦИЕНТА КОРРЕЛЯЦИИ МОЖЕТ ИЗМЕНЯТЬСЯ В ПРЕДЕЛАХ:

- 6) от 0 до +1
- 7) от -2 до +2
- 8) от -1 до +1
- 9) от 0 до 3
- 10) от ∞ до + ∞
- 10.ЕСЛИ ЗНАЧЕНИЕ КОЭФФИЦИЕНТА КОРРЕЛЯЦИИ РАВНО \pm 1, TO:
 - 6) корреляционная зависимость отсутствует
 - 7) зависимость между случайными величинами является функциональной зависимостью
 - 8) зависимость между случайными величинами является интегральной зависимостью
 - 9) зависимость между случайными величинами является квадратичной зависимостью;
 - 10) корреляционная зависимость является слабо выраженной

В полном объеме фонд оценочных средств по дисциплине/практике доступен в ЭИОС ВолгГМУ по ссылке(ам):

https://elearning.volgmed.ru/course/view.php?id=7937

Рассмотрено на заседании кафедры физики, математики и информатики ВолгГМУ «17» июня 2024 г., протокол № 11

Заведующий кафедрой

Showard

С.А. Шемякина