Тематический план занятий семинарского типа по дисциплине «Медицинские технологии» для обучающихся 2020 года поступления по образовательной программе 30.05.01 Медицинская биохимия, направленность (профиль) Медицинская биохимия (специалитет),

форма обучения очная на 2025-2026 учебный год

№	Темы занятий лекционного типа	Практичес кая подготовк а в рамках тематичес кого блока	Часы (академ.) ⁴
	11 семестр		
1.	Введение в биотехнологию. Биотехнология как наука и сфера производства ¹ . Краткая история развития биотехнологии. Биотехнология и фундаментальные дисциплины. Предмет и задачи биотехнологии. Практическое использование биотехнологических методов в деятельности человека. Микробиологическая биотехнология. Сельскохозяйственная и экологическая биотехнология. ²	-	2
2.	Биотехнология и медицина. Биотехнология и понимание основ патологии инфекционных, онкологических и наследственных заболеваний. Применение методов биотехнологии в экспериментальной и клинической медицине. ²	-	2
3.	Технологические объекты. Классификация. Критерии выбора биотехнологических объектов для производственных целей. Макрообъекты животного происхождения. Человек как объект иммунизации и донор, этические аспекты. Культуры клеток и тканей человека и других млекопитающих. Основные группы получаемых биологически активных веществ. Биообъекты растительного происхождения. Биообъекты — микро-организмы. Эукариоты (простейшие, нитчатые грибы, дрожжи). Прокариоты (актиномицеты, эубактерии). Вирусы. Основные группы получаемых биологически активных веществ. Биообъекты — макромолекулы с ферментативной активностью. Промышленные биокатализаторы на основе ферментов. Преимущества производства гормонов, витаминов, антибиотиков и других биопрепаратов биотехнологическими средствами. ²	-	2
4.	Способы повышения эффективности биотехнологического производства. Механизмы внутриклеточной регуляции метаболизма и управления биосинтезом целевых биотехнологических продуктов. Индукция и репрессия синтеза ферментов. Состав оперона. Механизмы регуляции действия генов и их использование в биотехнологических процессах. Ингибирование ферментов биосинтеза по принципу обратной связи (ретроингибирование). Механизмы ингибирования. Аминокислотный контроль метаболизма. 2	-	4
5.	Инженерная энзимология. Инженерная энзимология. Использование ферментов и ферментных систем в биотехнологическом производстве. Иммобилизованные ферменты и клетки. Методы иммобилизации ферментов при производстве	-	4

	лекарственных препаратов, гормонов, продуктов лечебного		
	питания, витаминов и других биологически активных веществ.		
	Нерастворимые носители органической и неорганической -		
	природы. Промышленные биокатализаторы на основе ферментов		
	и ферментных комплексов. ²		
	Биотехнологические системы производства.1		4
	Биотехнологическое производство. Этапы производства веществ-		
	метаболитов (базовый, промежуточный, заключительный этап).		
6.	Элементы, составляющие биотехнологический процесс.		
	Структура биотехнологического производства. Первая ступень:		
	подсистемы типа биообъекты, биореакторы, биомасса,		
	сепараторы, экстракторы и т.п. Вторая ступень: объединение	-	
	подсистем в функциональную единую цепь (участок, цех).		
	Технологические основы создания блочно-модульных типовых		
	· · · · · · · · · · · · · · · · · · ·		
	решений. Третья ступень: построение последовательности блоков		
	и модулей функциональных участков. Опытно-промышленная		
_	установка, предприятие законченного цикла. ²		
7.	Контроль знаний. 1	-	2
	Генетическая инженерия. 1 Генетическая инженерия – технология,		4
	обусловленная развитием молекулярной биологии и генетики		
	микроорганизмов. Основные принципы, на которых базируется генно-		
	инженерная технология. Этапы развития генетической инженерии.		
	Схема типичного эксперимента по получению и клонированию		
8.	рекомбинантных молекул ДНК. Использование методологии	_	
	генетической инженерии при решении задач различных областей		
	биологии. Генно-инженерная биотехнология. Использование		
	достижений генетической инженерии в медицине. Проблемы		
	безопасности при работе с рекомбинантными ДНК и при создании трансгенных организмов. Этические проблемы клонирования животных		
	и человека. ²		
	Ферменты, используемые в молекулярном клонировании.		4
	Рестрикционные эндонуклеазы. Основные принципы организации		
	систем рестрикции-модификации у бактерий. Роль систем		
	рестрикции – модификации в регуляции переноса генетической		
	информации между бактериями. Классификация и номенклатура		
	рестриктаз. Единица активности рестриктазы. Специфичность		
9.	рестриктаз. Определение размеров рестрикционных фрагментов с		
9.		-	
	помощью электрофореза в агарозных и полиакриламидных гелях.		
	Использование рестриктаз для конструирования рекомбинантных		
	молекул <i>in vitro</i> . Использование рестриктаз для физического		
	картирования, анализа полиморфизма ДНК,		
	штаммоспецифической характеристики вирусов и бактерий,		
	идентификации плазмид. ²		
	Векторы клонирования в бактериях. Понятие вектора и		4
10.	реципиента. Требования, предъявляемые к векторным молекулам.	-	
	Векторы автономные и интегративные.2		
	Плазмидные векторы. ¹ Понятие о репликоне. Основные		4
	сведения о плазмидах. Механизмы репликации плазмид.		
11.	Несовместимость плазмид. Плазмиды с узким и широким кругом	ПП	
	хозяев. Характеристика основных типов плазмид, используемых в		
	генетической инженерии (часть 1). ²		
10	Векторы на основе бактериофагафага λ.1 Биология фага λ.		4
12.	Структурная и генетическая организация фаговой хромосомы.	-	

		T	T
	Репликация фага и упаковка фаговой ДНК. Фаг как потенциальный		
	вектор клонирования. Методы выделения фаговой ДНК. Общие		
	принципы конструирования векторов на основе фага. Векторы		
	замещения и векторы внедрения. Емкость векторов. Стратегия		
	клонирования в фаговых векторах. Упаковка фаговой ДНК in vitro.		
	Методы селекции против нерекомбинантных родительских фагов. ²		
	Космиды. Векторы на основе однонитевых фагов. Фазмиды.1		4
	Основные свойства космид. Принципы клонирования в космидах.		
13.	Методы получения ДНК космид. Упаковка рекомбинантных молекул в		
	фаговые частицы in vitro. Преимущества и недостатки космидной		
	системы. Основные свойства бактериофага М13. Векторы на основе		
	фага М13. Методы выделения ДНК однонитевых фагов. Отбор	ПП	
	рекомбинантных фагов. Преимущества и недостатки векторов на основе		
	фага М13. Области использование векторов на основе однонитевых		
	фагов. Структурные и функциональные свойства фазмид. Фазмиды на		
	основе однонитевого фага M13 и ColE1-подобного репликона.		
	Репликация фазмид в клетках <i>E. coli.</i> ²		_
	Векторы специального назначения. Векторы для отбора		4
	промоторов. Векторы прямой селекции рекомбинантных клонов.		
	Прокариотические и эукариотические векторы экспрессии, их		
14.	структурная организация. Векторы секреции и их структурная	ПП	
	организация. Использование различных векторов для		
	секвенирования ДНК, сайт-направленного мутагенеза и		
	картирования геномов. ²		
	Принципы клонирования фрагментов ДНК. 1 Методы выделения		4
	хромосомной ДНК. Техника получения препаратов клонируемых		
15.	фрагментов. Увеличение эффективности клонирования путем подбора	-	
	оптимального молярного соотношения концов вектора и клонируемого		
	фрагмента. ²		
	Конструирование геномных библиотек. Расчет количества		4
	клонов в библиотеке генов в зависимости от размера генома и		
	размера клонируемых фрагментов. Определение		
1.0	представительности библиотеки генов. Стратегия создания		
16.	библиотек генов: выбор вектора клонирования, выбор	-	
	рестриктазы для фрагментирования геномной ДНК, условия		
	гидролиза геномной ДНК, фракционирование фрагментов ДНК по		
	размерам. ²		
	Полимеразная цепная реакция (ПЦР). ¹ Основы ПЦР.		4
17.	Использование ПЦР для получения и анализа рекомбинантных	ПП	
1/.	молекул ДНК. ²	1111	
	молекул дпк. Методы отбора и анализа рекомбинантных клонов. 1 Методы отбора,		1
	методы отоора и анализа рекомоинантных клонов. методы отоора, основанные на фенотипическом различии рекомбинантных и		4
	нерекомбинантных клонов. Клонирование с инсерционной		
18.	инактивацией. Метод прямой селекции рекомбинантных клонов по	-	
	инактивацией. Метод прямой селекции рекомойнантных клонов по комплементации. Векторы прямой селекции рекомбинантных клонов.		
	методы, основанные на гибридизации нуклеиновых кислот. ²		
	Генетическая инженерия эукариотов и области применения. ¹		4
	Методы введения ДНК в клетки животных. Векторы на основе		'
	вирусов животных: вирус бычьей папилломы, вирус SV40,		
19.			
	ретровирусы. Получение трансгенных животных. Генотерапия.	-	
	Применение трансгенной технологии для получения медицинских		
	препаратов. Международный проект "Геном человека" и его		
	цели. ²		
20.	Контроль знаний. 1	-	2
		1	<u>i </u>

21.	Технология получения и культивирования линий животных и растительных клеток. 1 Культуры тканей растений и животных. Краткая история развития технологии получения и культивирования линий животных и растительных клеток. Культуры тканей растений, животных и человека как биотехнологические объекты получения целевых продуктов. Фармакотехнология. Значения клеточной	-	4
22.	инженерии для экспериментальной и клинической медицины. ² Технология получения и культивирования линий эукариотических клеток. ¹ Основные требования к лаборатории при работе с клеточными культурами. Принцип стерильной работы и условия культивирования клеточных культур. Приготовление и контроль питательных сред для культивирования клеточных линий. Сбалансированные солевые растворы. Коммерческие препараты для оптимизации условий роста культур клеток и тканей. Роль сыворотки при культивировании клеток. Ростовые среды. Поддерживающие среды. ²	-	4
23.	Сохранение и оценка качества культур клеточных линий. 1 Первичные и пассируемые культуры. Суспензионные и монослойные культуры клеточных линий. Факторы, лимитирующие рост клеток. Стабильные клеточные линии. Методы получения клеточных суспензий: механические, с использованием протеаз, хелатирующих агентов. 2	ПП	4
24.	Криоконсервация клеточных линий. Размораживание и оценка показателей жизнеспособности функционального состояния клеток. Основные подходы к масштабированному культивированию клеток в условиях биотехнологического производства. ²	-	4
25.	Перевиваемые клеточные линии. 1 Принципы иммортализации клеток. Особенности культивирования монослойных и трансформированных клеточных линий. Получение биологически активных веществ в культуре клеток. 2	-	4
26.	Гибридизация клеточных линий. Метод гибридизации соматических клеток. Метод слияния протопластов. Основы и принципы селекции клеток, селективные среды. Получение новых гибридных культур в качестве целевых биотехнологических продуктов. ²	-	2
27.	Иммунологические и иммунохимические методы исследования культур клеточных линий и продуктов их синтеза. 1 Метод флуоресцирующих антител. 2	ПП	4
28.	Контроль знаний. ¹		2
29.	Достижения фундаментальной иммунологии и клеточной биологии, обусловившие успешную реализацию гибридомной технологии получения перевиваемых клеток-продуцентов моноклональных иммуноглобулинов. История создания гибридомной технологии Келлером и Мильштейном (1975 г.), ее мирового признания и присуждения авторам Нобелевской премии в 1985 г. Ее значение для теории и практики. Области применения. 2	-	4
30.	Основные положения гибридомной технологии. Принципиальные схемы воспроизведения гибридомной технологии при получении МКА заданной специфичности. Особенности материально-технического обеспечения работ по получению гибридом. Последовательность реализации экспериментальных задач при получении МКА. 2	-	4
31.	Основной протокол гибридизации клеточных линий. 1 Подготовительные этапы работы: 1) оптимизация схем стимуляции Влимфоцитов <i>in vivo</i> (иммунизация животных - доноров селезеночных клеток) и лимфоцитов <i>in vitro</i> , 2) требования к выбору злокачественного партнера для гибридизации и подготовка популяции перевиваемых миеломных клеток, 3) методы скрининга МКА на этапах отбора позитивных гибридом (ТИФМ, МФА, РИА). 2	-	4
32.	Условия и методы тиражирования культур гибридных клеток. ¹	-	4

	Накопление МКА in vitro, in vivo. Методы выделения МКА, их		
	концентрирования очистки, иммунохимического анализа		
	моноклональных иммуноглобулинов и определения их тонкой		
	(эпитопной) специфичности $.^2$		
33.	Области применения моноклональных иммуноглобулинов. 1		2
	Расширенный обзор областей применения моноклональных		
	иммуноглобулинов. Современное состояние вопроса применения МКА	-	
	к возбудителям инфекционных заболеваний для индикации		
	микроорганизмов, очистки антигенов и лечения ряда инфекций. ²		
	Итоги и перспективы использования моноклональных антител в		2
	качестве основы диагностических и лекарственных препаратов.		
34.	Единая система GLP, GCP и GMP при предклиническом, клиническом	-	
	испытании лекарственных средств и при их производстве. Особенности		
	требований GMP к биотехнологическому производству. ²		
35.	Контроль знаний. ¹		2
	Итого		120

¹ – тема

Рассмотрено на заседании кафедры молекулярной биологии и генетики, протокол от «30» мая 2025 г. № 10.

Заведующий кафедрой

А.В.Топорков

 ^{2 –} сущностное содержание
 3 – ПП (практическая подготовка)
 4 – один тематический блок включает в себя несколько занятий, продолжительность одного занятия 45 минут, с перерывом между занятиями не менее 5 минут