Тематический план занятий семинарского типа по дисциплине «Молекулярная биология» для обучающихся 2022 года поступления по образовательной программе 30.05.01 Медицинская биохимия, направленность (профиль) Медицинская биохимия (специалитет),

форма обучения очная на 2025-2026 учебный год

№	Темы занятий лекционного типа	Практичес кая подготовк а в рамках тематичес кого блока	Часы (академ.) ⁴	
	7 семестр			
1.	Молекулярная биология и исторический очерк ее развития ¹ . Предмет и задачи молекулярной биологии. Прокариоты и эукариоты. Модельные организмы в молекулярной биологии. История молекулярной биологии. Фундаментальные открытия молекулярной биологии ² .	-	2	
2.	Структура и функции белков. Аминокислотный состав белков. Структура пептидной связи. Пептиды. Первичная структура белка. Вторичная структура белка. Третичная структура белка и белковые домены. Четвертичная структура белка. Номенклатура и классификация белков. ²	-	2	
3.	Фолдинг белков. 1 Модели сворачивания белков и феномен кооперативности. Факторы фолдинга. Функции белков шаперонов. Прионы. 2	-	2	
4.	Компоненты нуклеиновых кислот. Структура ДНК. Структурные компоненты нуклеиновых кислот. Конформации компонентов нуклеиновых кислот. Нуклеотидный состав ДНК и РНК. Правила Чаргаффа. Первичная структура ДНК. Вторичная стуктура ДНК. Полиморфизм двойной спирали. Третичная структура ДНК. 2	-	2	
5.	Структура и функции РНК. АТФ. Доказательства генетической роли нуклеиновых кислот.¹ Транспортные РНК. Рибосомы и рибосомальные РНК. Матричные (информационные) РНК. АТФ и другие макроэргические соединения. Доказательства генетической роли нуклеиновых кислот.²	-	2	
6.	Понятие о геномике. Структура геномов прокариот. Понятие о геномике. Структура бактериальной хромосомы. Структура прокариотических генов. Бактериальные плазмиды. Мобильные генетические элементы прокариот. Островки патогенности вирулентных бактерий. 2	-	2	
7.	Структура геномов эукариот. Особенности эукариотического генома. Уровни упаковки хроматина. Структура и классификация эукариотических генов. Неядерные геномы. Мобильные генетические	-	2	

	элементы эукариот. Высокоповторяющиеся последовательности ДНК		
	эукариот (сателлитная ДНК). Умеренно повторяющиеся		
	последовательности ДНК эукариот.2		
	Реактивы, посуда и оборудование для молекулярно-биологических		
	исследований. Правила техники безопасности при работе в		
8.	лаборатории. Реактивы в лаборатории молекулярной биологии. Посуда в	-	2
	лаборатории молекулярной биологии. Оборудование для молекулярно-		
	биологических исследований. ²		
	Приемы обращения с оборудованием и посудой в лаборатории		
	молекулярной биологии. Взвешивание. Центрифугирование.		
9.	Перемешивание. Дозирование жидкостей. Практическая работа № 1	_	2
	«Овладение приемами обращения с оборудованием и посудой,		
	используемыми для молекулярно-биологических исследований». ²		
	Качественные реакции на белки. Цветные реакции на белки. Реакции		
10.	осаждения белков. Практическая работа № 2 «Качественные реакции на		2
10.	белки». ²	-	۷
	Нуклеопротеины. Практическая работа № 3 «Гидролиз и определение		
11.		-	2
	состава нуклеопротеинов дрожжей Saccharomyces cerevisiae».		_
12.	Рубежный контроль знаний по модулю № 1.1 Коллоквиум № $1.^2$	-	2
	Репликация и метилирование Д НК. Модели удвоения молекул ДНК.		
	Принципы репликации. Этапы репликации. Суперспирализация при		
	репликации. Топоизомеразы. Классификация и характеристика ДНК-		
13.	полимераз. Ферментативный комплекс репликации. Проблема концевой	-	2
	недорепликации линейных ДНК. Теломерная теория старения.		
	Метилирование ДНК и его значение для функциональной активности		
	генов.		
	Репарация ДНК. 1 Мутагенные факторы. Виды повреждений ДНК.		
	Прямая репарация ДНК. Эксцизионная репарация ДНК: вырезание		
	оснований с помощью гликозилаз; нуклеотидная эксцизионная		
14.	репарация. Репарация неспаренных оснований. Рекомбинационная	-	2
	(пострепликативная) репарация ДНК. SOS-репарация. Дефекты		
	репарационных систем и наследственные болезни.		
1.5	Генетическая рекомбинация. Общая характеристика рекомбинации.		2
15.	Основные понятия. Общая рекомбинация. Белки, участвующие в общей	-	2
	рекомбинации E. coli. ²		
	Транскрипция у прокариот и ее регуляция. Общая характеристика		
	транскрипции. Принципы транскрипции. Структура и функции РНК-		
16.	полимераз у прокариот. Этапы транскрипции у прокариот. Регуляция	-	4
	транскрипции у прокариот: регуляция экспрессии лактозного оперона E .		
	coli; регуляция экспрессии триптофанового оперона E. coli. ²		
	Особенности транскрипции у эукариот. Процессинг. РНК-		
	полимеразы и белковые факторы транскрипции эукариот.		
17.	Последовательности, регулирующие транскрипцию у эукариот.	_	4
~ ′ •	Процессинг первичных транскриптов. Механизм сплайсинга.		
	Альтернативный сплайсинг. Аутосплайсинг. ²		
	Обратная транскрипция и РНК-содержащие вирусы. Структура и		
18.	функции РНК-зависимой ДНК-полимеразы (обратной транскриптазы).		
		-	4
	Структура РНК ретровирусов. Этапы обратной транскрипции. РНК-		
	содержащие вирусы. ²		

-			
19.	Трансляция и ее регуляция. Генетический код и его свойства.		
	Активация аминокислот. Аминоацил-тРНК. Инициация трансляции.		
	Элонгация трансляции. Терминация трансляции. Энергетические		4
	потребности синтеза полипептидной цепи. Регуляция трансляции:	-	4
	дискриминация мРНК; трансляционная репрессия; тотальная регуляция		
	белкового синтеза. Особенности процесса трансляции у прокариот. ²		
	Клеточный цикл и его регуляция. 1 Клеточный цикл. Митоз. Мейоз.		
	Циклины, циклинзависимые киназы и митогены. Механизм действия		
	комплексов циклин-Cdk в G ₁ -периоде. Механизм действия комплексов		
20.	циклин-Cdk в S и G ₂ -периодах. Механизм действия комплекса циклинВ-	_	4
20.	Cdk в профазу и метафазу митоза. Механизм действия анафазу		7
	обеспечивающего фактора и протеинфосфатаз в анафазу и телофазу		
	митоза. ²		
21.	Рубежный контроль знаний по модулю № 2. Коллоквиум № $2.^2$		2
۷1.	Генетическая инженерия. Генетическая инженерия и ее методы.	-	<u> </u>
	Методы выделения нуклеиновых кислот из биологического материала.		
22.	Выделение плазмидной ДНК. Принцип метода электрофореза.	-	4
	Электрофорез нуклеиновых кислот в агарозном геле. Номенклатура и		
	классификация рестриктаз. Механизм действия рестриктаз. Другие		
	ферменты в генетической инженерии. Векторные молекулы. 1		
	Молекулярная гибридизация, амплификация и секвенирование		
	нуклеиновых кислот. 1 Молекулярная гибридизация нуклеиновых		
	кислот. Механизм полимеразной цепной реакции (ПЦР). Стадии ПЦР-		_
23.	исследования. Интерпретация результатов ПЦР. Контроли реакции.	-	4
	Виды ПЦР. Секвенирование нуклеиновых кислот по Максаму-Гилберту.		
	Секвенирование нуклеиновых кислот по Сенгеру (метод		
	терминаторов).2		
	Молекулярная диагностика и генотипирование. Генодиагностика		
	инфекционных болезней. Генотипирование возбудителей		
24.	инфекционных заболеваний. HLA-типирование в трансплантологии.	_	4
21.	Методы первичной идентификации точечных мутаций. Методы		'
	идентификации известных мутаций. Геноидентификация личности в		
	судебно-медицинской практике. ²		
	Рестрикция и лигирование ДНК (часть I).¹ Практическая работа № 4	ПП	4
25.	«Проведение реакции рестрикции плазмидного вектора». ²		7
23.	Рестрикция и лигирование ДНК (часть II).¹ Практическая работа № 4	ПП	4
	«Проведение реакции рестрикции плазмидного вектора». ²		7
	Трансформация клеток кишечной палочки (часть I). 1 Практическая	ПП	
	работа № 7 «Посев культуры кишечной палочки. Приготовление		4
26.	компетентных клеток кишечной палочки». ²		
∠0.	Трансформация клеток кишечной палочки (часть II). Практическая	ПП	
	работа № 9 «Трансформация компетентных клеток кишечной палочки		4
	плазмидным вектором». ²		
	Выделение и фракционирование нуклеиновых кислот (часть І).1	ПП	
27.	Практическая работа № 10 «Выделение геномной и плазмидной ДНК из		4
	культуры кишечной палочки». ²		
	Выделение и фракционирование нуклеиновых кислот (часть II).1	ПП	
	Практическая работа № 11 «Электрофорез геномной и плазмидной ДНК	*	4
	кишечной палочки». ²		
			1

28.	Полимеразная цепная реакция (часть I). Практическая работа № 12 «Выделение тотальной ДНК из тканей животных». ²		4
	Полимеразная цепная реакция (часть II).¹ Практическая работа № 13	ПП	
	«Постановка и проведение полимеразной цепной реакции. Учет		4
	результатов методом электрофореза». ²		
29.	Биоинформатика. Предмет и задачи биоинформатики.	ПП	
	Биоинформационные базы данных и управление ими. Классификация		4
	биоинформационных баз данных. Базы данных последовательностей		
	нуклеиновых кислот и белков. Выравнивание аминокислотных и		
	нуклеотидных последовательностей. Семейство компьютерных		
	программ BLAST. Филогенетический анализ и средства для его		
	проведения. Практическая работа № 15 «Биоинформационный анализ		
	нуклеотидных последовательностей». ²		
30.	Рубежный контроль знаний по модулю № 3. 1 Коллоквиум № 3. 2	-	2
	Итого		102

¹ – тема

Рассмотрено на заседании кафедры молекулярной биологии и генетики, протокол от «30» мая 2025 г. № 10.

Заведующий кафедрой

А.В.Топорков

 $^{^{2}}$ — сущностное содержание 3 — ПП (практическая подготовка)

^{4 –} один тематический блок включает в себя несколько занятий, продолжительность одного занятия 45 минут, с перерывом между занятиями не менее 5 минут